Chen Ming-Huei, Van Eerdewegh Paul, Vincent Quentin B, Alcais Alexandre, Abel Laurent, Dupuis Josée
Department of Neurology and Framingham Heart Study, Boston University, Boston, Mass., USA.
Hum Hered. 2010;69(2):104-19. doi: 10.1159/000264448. Epub 2009 Dec 4.
Linkage analysis is often followed by association mapping to localize disease variants. In this paper, we evaluate approaches to determine how much of the observed linkage evidence, namely the identity-by-descent (IBD) sharing at the linkage peak, is explained by associated SNPs. We study several methods: Homozygote Sharing Tests (HST), Genotype Identity-by-Descent Sharing Test (GIST), and a permutation approach. We also propose a new approach, HSTMLB, combining HST and the Maximum Likelihood Binomial (MLB) linkage statistic. These methods can identify SNPs partially explaining the linkage peak, but only HST and HSTMLB can identify SNPs that do not fully explain the linkage evidence and be applied to multiple-SNPs. We contrast these methods with the association tests implemented in the software LAMP. In our simulations, GIST is more powerful at finding SNPs that partially explain the linkage peak, while HST and HSTMLB are equally powerful at identifying SNPs that do not fully explain the linkage peak. When applied to the North American Rheumatoid Arthritis Consortium data, HST and HSTMLB identify marker pairs that may fully explain the linkage peak on chromosome 6. In conclusion, HST and HSTMLB provide simple and flexible tools to identify SNPs that explain the IBD sharing at the linkage peak.
连锁分析之后通常会进行关联定位以确定疾病变异的位置。在本文中,我们评估了一些方法,以确定观察到的连锁证据(即连锁峰处的同源等位基因(IBD)共享)中有多少可以由相关的单核苷酸多态性(SNP)来解释。我们研究了几种方法:纯合子共享检验(HST)、基因型同源等位基因共享检验(GIST)以及一种置换方法。我们还提出了一种新方法,即HSTMLB,它结合了HST和最大似然二项式(MLB)连锁统计量。这些方法可以识别部分解释连锁峰的SNP,但只有HST和HSTMLB能够识别不能完全解释连锁证据的SNP,并且可以应用于多个SNP。我们将这些方法与软件LAMP中实施的关联检验进行了对比。在我们的模拟中,GIST在发现部分解释连锁峰的SNP方面更具效力,而HST和HSTMLB在识别不能完全解释连锁峰的SNP方面效力相当。当应用于北美类风湿关节炎联盟的数据时,HST和HSTMLB识别出了可能完全解释6号染色体上连锁峰的标记对。总之,HST和HSTMLB提供了简单且灵活的工具来识别解释连锁峰处IBD共享的SNP。