Song Yeunjoo E, Namkung Junghyun, Shields Robert W, Baechle Daniel J, Song Sunah, Elston Robert C
Department of Epidemiology and Biostatistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
BMC Proc. 2011 Nov 29;5 Suppl 9(Suppl 9):S84. doi: 10.1186/1753-6561-5-S9-S84.
We evaluate an approach to detect single-nucleotide polymorphisms (SNPs) that account for a linkage signal with covariate-based affected relative pair linkage analysis in a conditional-logistic model framework using all 200 replicates of the Genetic Analysis Workshop 17 family data set. We begin by combining the multiple known covariate values into a single variable, a propensity score. We also use each SNP as a covariate, using an additive coding based on the number of minor alleles. We evaluate the distribution of the difference between LOD scores with the propensity score covariate only and LOD scores with the propensity score covariate and a SNP covariate. The inclusion of causal SNPs in causal genes increases LOD scores more than the inclusion of noncausal SNPs either within causal genes or outside causal genes. We compare the results from this method to results from a family-based association analysis and conclude that it is possible to identify SNPs that account for the linkage signals from genes using a SNP-covariate-based affected relative pair linkage approach.
我们在使用遗传分析研讨会17家庭数据集的所有200个重复样本的条件逻辑模型框架中,评估一种检测单核苷酸多态性(SNP)的方法,这些SNP在基于协变量的患病亲属对连锁分析中解释连锁信号。我们首先将多个已知协变量值合并为一个单一变量,即倾向得分。我们还将每个SNP用作协变量,基于次要等位基因的数量使用加性编码。我们评估仅使用倾向得分协变量时的LOD得分与使用倾向得分协变量和SNP协变量时的LOD得分之间差异的分布。因果基因中包含因果SNP比因果基因内或因果基因外包含非因果SNP更能提高LOD得分。我们将此方法的结果与基于家系的关联分析结果进行比较,并得出结论,使用基于SNP协变量的患病亲属对连锁方法可以识别解释来自基因的连锁信号的SNP。