Suppr超能文献

用于活体人类视网膜非侵入性细胞表型分析的每秒120,000次深度扫描的自适应光学光学相干断层扫描技术

Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina.

作者信息

Torti Cristiano, Povazay Boris, Hofer Bernd, Unterhuber Angelika, Carroll Joseph, Ahnelt Peter Kurt, Drexler Wolfgang

机构信息

Biomedical Imaging Group, School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4LU, Wales, UK.

出版信息

Opt Express. 2009 Oct 26;17(22):19382-400. doi: 10.1364/OE.17.019382.

Abstract

This paper presents a successful combination of ultra-high speed (120,000 depth scans/s), ultra-high resolution optical coherence tomography with adaptive optics and an achromatizing lens for compensation of monochromatic and longitudinal chromatic ocular aberrations, respectively, allowing for non-invasive volumetric imaging in normal and pathologic human retinas at cellular resolution. The capability of this imaging system is demonstrated here through preliminary studies by probing cellular intraretinal structures that have not been accessible so far with in vivo, non-invasive, label-free imaging techniques, including pigment epithelial cells, micro-vasculature of the choriocapillaris, single nerve fibre bundles and collagenous plates of the lamina cribrosa in the optic nerve head. In addition, the volumetric extent of cone loss in two colour-blinds could be quantified for the first time. This novel technique provides opportunities to enhance the understanding of retinal pathogenesis and early diagnosis of retinal diseases.

摘要

本文介绍了一种成功的组合,即超高速(120,000次深度扫描/秒)、超高分辨率光学相干断层扫描与自适应光学以及消色差透镜的结合,分别用于补偿单色和纵向色差,从而能够以细胞分辨率对正常和病理性人类视网膜进行非侵入性体积成像。通过初步研究,探测到了迄今体内非侵入性无标记成像技术无法触及的视网膜内细胞结构,包括色素上皮细胞、脉络膜毛细血管的微血管、单神经纤维束以及视神经乳头筛板的胶原板,展示了该成像系统的能力。此外,首次对两名色盲患者视锥细胞缺失的体积范围进行了量化。这项新技术为增进对视网膜发病机制的理解和视网膜疾病的早期诊断提供了机会。

相似文献

2
A dual-modal retinal imaging system with adaptive optics.
Opt Express. 2013 Dec 2;21(24):29792-807. doi: 10.1364/OE.21.029792.
4
Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions.
J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1373-83. doi: 10.1364/josaa.24.001373.
5
Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging.
J Opt Soc Am A Opt Image Sci Vis. 2007 May;24(5):1327-36. doi: 10.1364/josaa.24.001327.
6
High-resolution, in vivo retinal imaging using adaptive optics and its future role in ophthalmology.
Expert Rev Med Devices. 2005 Mar;2(2):205-16. doi: 10.1586/17434440.2.2.205.
9
Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography.
Opt Express. 2011 Jan 17;19(2):1217-27. doi: 10.1364/OE.19.001217.
10
Dynamic focus in optical coherence tomography for retinal imaging.
J Biomed Opt. 2006 Sep-Oct;11(5):054013. doi: 10.1117/1.2358960.

引用本文的文献

1
Optoretinography with actively stabilized adaptive optics optical coherence tomography.
Biomed Opt Express. 2025 Jul 17;16(8):3222-3236. doi: 10.1364/BOE.566376. eCollection 2025 Aug 1.
2
Wide-field choriocapillaris mapping with 3.4 MHz adaptive optics-optical coherence tomography angiography.
Biomed Opt Express. 2025 Jul 17;16(8):3255-3269. doi: 10.1364/BOE.550936. eCollection 2025 Aug 1.
4
Pearls and Pitfalls of Adaptive Optics Ophthalmoscopy in Inherited Retinal Diseases.
Diagnostics (Basel). 2023 Jul 19;13(14):2413. doi: 10.3390/diagnostics13142413.
5
Evolution of adaptive optics retinal imaging [Invited].
Biomed Opt Express. 2023 Feb 28;14(3):1307-1338. doi: 10.1364/BOE.485371. eCollection 2023 Mar 1.
6
Twenty-five years of clinical applications using adaptive optics ophthalmoscopy [Invited].
Biomed Opt Express. 2022 Dec 20;14(1):387-428. doi: 10.1364/BOE.472274. eCollection 2023 Jan 1.
7
Wide-Field Three-Dimensional Depth-Invariant Cellular-Resolution Imaging of the Human Retina.
Small. 2023 Mar;19(11):e2203357. doi: 10.1002/smll.202203357. Epub 2023 Jan 15.
8
Automatic quantification of cone photoreceptors in adaptive optics scanning light ophthalmoscope images using multi-task learning.
Biomed Opt Express. 2022 Sep 9;13(10):5187-5201. doi: 10.1364/BOE.471426. eCollection 2022 Oct 1.
9
The Development and Clinical Application of Innovative Optical Ophthalmic Imaging Techniques.
Front Med (Lausanne). 2022 Jun 30;9:891369. doi: 10.3389/fmed.2022.891369. eCollection 2022.
10
Multi-modal and multi-scale clinical retinal imaging system with pupil and retinal tracking.
Sci Rep. 2022 Jun 10;12(1):9577. doi: 10.1038/s41598-022-13631-1.

本文引用的文献

1
Correcting the spherical and chromatic aberrations of the eye.
J Opt Soc Am. 1946 Apr;36:237-9. doi: 10.1364/josa.36.000237.
2
In vivo retinal imaging by optical coherence tomography.
Opt Lett. 1993 Nov 1;18(21):1864-6. doi: 10.1364/ol.18.001864.
3
Adaptive optics with a magnetic deformable mirror: applications in the human eye.
Opt Express. 2006 Oct 2;14(20):8900-17. doi: 10.1364/oe.14.008900.
4
5
Chromatic aberration correction of the human eye for retinal imaging in the near infrared.
Opt Express. 2006 Jun 26;14(13):6213-25. doi: 10.1364/oe.14.006213.
8
Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina.
Opt Express. 2005 Jun 13;13(12):4792-811. doi: 10.1364/opex.13.004792.
10
Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography.
Opt Express. 2004 May 31;12(11):2435-47. doi: 10.1364/opex.12.002435.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验