Torti Cristiano, Povazay Boris, Hofer Bernd, Unterhuber Angelika, Carroll Joseph, Ahnelt Peter Kurt, Drexler Wolfgang
Biomedical Imaging Group, School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4LU, Wales, UK.
Opt Express. 2009 Oct 26;17(22):19382-400. doi: 10.1364/OE.17.019382.
This paper presents a successful combination of ultra-high speed (120,000 depth scans/s), ultra-high resolution optical coherence tomography with adaptive optics and an achromatizing lens for compensation of monochromatic and longitudinal chromatic ocular aberrations, respectively, allowing for non-invasive volumetric imaging in normal and pathologic human retinas at cellular resolution. The capability of this imaging system is demonstrated here through preliminary studies by probing cellular intraretinal structures that have not been accessible so far with in vivo, non-invasive, label-free imaging techniques, including pigment epithelial cells, micro-vasculature of the choriocapillaris, single nerve fibre bundles and collagenous plates of the lamina cribrosa in the optic nerve head. In addition, the volumetric extent of cone loss in two colour-blinds could be quantified for the first time. This novel technique provides opportunities to enhance the understanding of retinal pathogenesis and early diagnosis of retinal diseases.
本文介绍了一种成功的组合,即超高速(120,000次深度扫描/秒)、超高分辨率光学相干断层扫描与自适应光学以及消色差透镜的结合,分别用于补偿单色和纵向色差,从而能够以细胞分辨率对正常和病理性人类视网膜进行非侵入性体积成像。通过初步研究,探测到了迄今体内非侵入性无标记成像技术无法触及的视网膜内细胞结构,包括色素上皮细胞、脉络膜毛细血管的微血管、单神经纤维束以及视神经乳头筛板的胶原板,展示了该成像系统的能力。此外,首次对两名色盲患者视锥细胞缺失的体积范围进行了量化。这项新技术为增进对视网膜发病机制的理解和视网膜疾病的早期诊断提供了机会。