Institute for Infection Medicine, Christian-Albrecht University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany.
PLoS One. 2009 Dec 4;4(12):e8178. doi: 10.1371/journal.pone.0008178.
Bacterial artificial chromosomes (BACs) are well-established cloning vehicles for functional genomics and for constructing targeting vectors and infectious viral DNA clones. Red-recombination-based mutagenesis techniques have enabled the manipulation of BACs in Escherichia coli without any remaining operational sequences. Here, we describe that the F-factor-derived vector sequences can be inserted into a novel position and seamlessly removed from the present location of the BAC-cloned DNA via synchronous Red-recombination in E. coli in an en passant mutagenesis-based procedure. Using this technique, the mini-F elements of a cloned infectious varicella zoster virus (VZV) genome were specifically transposed into novel positions distributed over the viral DNA to generate six different BAC variants. In comparison to the other constructs, a BAC variant with mini-F sequences directly inserted into the junction of the genomic termini resulted in highly efficient viral DNA replication-mediated spontaneous vector excision upon virus reconstitution in transfected VZV-permissive eukaryotic cells. Moreover, the derived vector-free recombinant progeny exhibited virtually indistinguishable genome properties and replication kinetics to the wild-type virus. Thus, a sequence-independent, efficient, and easy-to-apply mini-F vector transposition procedure eliminates the last hurdle to perform virtually any kind of imaginable targeted BAC modifications in E. coli. The herpesviral terminal genomic junction was identified as an optimal mini-F vector integration site for the construction of an infectious BAC, which allows the rapid generation of mutant virus without any unwanted secondary genome alterations. The novel mini-F transposition technique can be a valuable tool to optimize, repair or restructure other established BACs as well and may facilitate the development of gene therapy or vaccine vectors.
细菌人工染色体(BAC)是功能基因组学和构建靶向载体以及感染性病毒 DNA 克隆的成熟克隆载体。基于红色重组的诱变技术使人们能够在大肠杆菌中操纵 BAC,而不会留下任何操作序列。在这里,我们描述了可以通过大肠杆菌中同步红色重组将源自 F 因子的载体序列插入新位置,并通过基于易位的诱变的无缝方法从 BAC 克隆 DNA 的现有位置中去除。使用该技术,克隆的传染性水痘带状疱疹病毒(VZV)基因组的 mini-F 元件被特异性转位到病毒 DNA 上分布的新位置,以产生六个不同的 BAC 变体。与其他构建体相比,mini-F 序列直接插入基因组末端连接处的 BAC 变体在转染的 VZV 允许的真核细胞中病毒重建时导致高效的病毒 DNA 复制介导的自发载体切除。此外,衍生的无载体重组后代表现出与野生型病毒几乎相同的基因组特性和复制动力学。因此,一种序列非依赖性、高效且易于应用的 mini-F 载体转位程序消除了在大肠杆菌中进行几乎任何想象中的靶向 BAC 修饰的最后一个障碍。疱疹病毒末端基因组连接被鉴定为构建感染性 BAC 的最佳 mini-F 载体整合位点,可快速生成突变病毒,而不会产生任何不需要的二次基因组改变。新型 mini-F 转位技术可以成为优化、修复或重构其他已建立的 BAC 的有价值工具,并且可能有助于基因治疗或疫苗载体的开发。