Suppr超能文献

用于研究人内皮-间充质干细胞相互作用的微图案化三维水凝胶系统。

Micropatterned three-dimensional hydrogel system to study human endothelial-mesenchymal stem cell interactions.

机构信息

Department of Pharmaceutical Sciences, University of Padua, Padua, Italy.

出版信息

J Tissue Eng Regen Med. 2010 Mar;4(3):205-15. doi: 10.1002/term.231.

Abstract

The creation of vascularized engineered tissues of clinically relevant size is a major challenge of tissue engineering. While it is known that endothelial and mural vascular cells are integral to the formation of stable blood vessels, the specific cell types and optimal conditions for engineered vascular networks are poorly understood. To this end, we investigated the vasculogenic potential of human mesenchymal stem cell (MSC) populations derived from three different sources: (a) bone marrow aspirates; (b) perivascular cells from the umbilical cord vein; and (c) perivascular cells from the umbilical cord artery. Cell populations were isolated and identified as MSCs according to their phenotypes and differentiation potential. Human umbilical vein endothelial cells (HUVECs) were used as a standard for endothelial cells. A novel co-culture system was developed to study cell-cell interactions in a spatially controlled three-dimensional (3D) fibrin hydrogel model. Using microfluidic patterning, it was possible to localize hydrogel-encapsulated HUVECs and MSCs within separate channels spaced at 500, 1000 or 2000 microm. All three MSC populations had similar expression profiles of mesenchymal cell markers and similar capacity for osteogenic and adipogenic differentiation. However, bone marrow-derived MSCs (but not umbilical vein or artery derived MSCs) showed strong distance-dependent migration toward HUVECs and supported the formation of stable vascular networks resembling capillary-like vasculature. The presented approach provides a simple and robust model to study the cell-cell communication of relevance to engineering vascularized tissues.

摘要

生成具有临床相关尺寸的血管化工程组织是组织工程的主要挑战。虽然已知内皮细胞和血管壁细胞是稳定血管形成的重要组成部分,但对于工程化血管网络的特定细胞类型和最佳条件还了解甚少。为此,我们研究了源自三种不同来源的人骨髓间充质干细胞(MSC)群体的血管生成潜力:(a)骨髓抽吸物;(b)脐静脉的血管周细胞;(c)脐动脉的血管周细胞。根据其表型和分化潜能,分离和鉴定细胞群体为 MSC。人脐静脉内皮细胞(HUVEC)用作内皮细胞的标准。开发了一种新的共培养系统,以在空间受控的三维(3D)纤维蛋白水凝胶模型中研究细胞-细胞相互作用。通过微流控图案化,可以将包封在水凝胶中的 HUVEC 和 MSC 定位在间隔为 500、1000 或 2000 微米的单独通道内。所有三种 MSC 群体均具有相似的间充质细胞标志物表达谱,并且具有相似的成骨和成脂分化能力。然而,骨髓来源的 MSC(而不是脐静脉或动脉来源的 MSC)表现出对 HUVEC 的强烈距离依赖性迁移,并支持形成类似于毛细血管样血管的稳定血管网络。所提出的方法提供了一种简单而强大的模型,可用于研究与工程化血管组织相关的细胞-细胞通讯。

相似文献

2
Synergistic interplay between human MSCs and HUVECs in 3D spheroids laden in collagen/fibrin hydrogels for bone tissue engineering.
Acta Biomater. 2019 Sep 1;95:348-356. doi: 10.1016/j.actbio.2019.02.046. Epub 2019 Mar 1.
3
Influence of Different Cell Types and Sources on Pre-Vascularisation in Fibrin and Agarose-Collagen Gels.
Organogenesis. 2020;16(1):14-26. doi: 10.1080/15476278.2019.1697597. Epub 2019 Dec 6.
4
Coculture of Endothelial and Stromal Cells to Promote Concurrent Osteogenesis and Vasculogenesis.
Tissue Eng Part A. 2021 Nov;27(21-22):1376-1386. doi: 10.1089/ten.TEA.2020.0330. Epub 2021 Mar 30.
9
Engineering Biomimetic Microvascular Capillary Networks in Hydrogel Fibrous Scaffolds via Microfluidics-Assisted Co-Axial Wet-Spinning.
ACS Appl Mater Interfaces. 2024 Dec 4;16(48):65927-65941. doi: 10.1021/acsami.4c15221. Epub 2024 Nov 20.

引用本文的文献

2
Liquefied capsules containing nanogrooved microdiscs and umbilical cord-derived cells for bone tissue engineering.
Open Res Eur. 2024 Sep 9;4:94. doi: 10.12688/openreseurope.17000.2. eCollection 2024.
3
Trends in hydrogel-based encapsulation technologies for advanced cell therapies applied to limb ischemia.
Mater Today Bio. 2022 Feb 16;13:100221. doi: 10.1016/j.mtbio.2022.100221. eCollection 2022 Jan.
4
Endocytosis and exocytosis protect cells against severe membrane tension variations.
Biophys J. 2021 Dec 21;120(24):5521-5529. doi: 10.1016/j.bpj.2021.11.019. Epub 2021 Nov 25.
5
Imaging therapeutic peptide transport across intestinal barriers.
RSC Chem Biol. 2021 Jun 15;2(4):1115-1143. doi: 10.1039/d1cb00024a. eCollection 2021 Aug 5.
6
Engineering microenvironments for manufacturing therapeutic cells.
Exp Biol Med (Maywood). 2021 Aug;246(16):1845-1856. doi: 10.1177/15353702211026922. Epub 2021 Jul 11.
7
Microvascular Tissue Engineering-A Review.
Biomedicines. 2021 May 21;9(6):589. doi: 10.3390/biomedicines9060589.
9
Gradient Hydrogels.
Adv Biochem Eng Biotechnol. 2021;178:227-251. doi: 10.1007/10_2020_155.

本文引用的文献

1
Transport-mediated angiogenesis in 3D epithelial coculture.
FASEB J. 2009 Jul;23(7):2155-64. doi: 10.1096/fj.08-122820. Epub 2009 Feb 26.
2
Influence of adult mesenchymal stem cells on in vitro vascular formation.
Tissue Eng Part A. 2009 Jul;15(7):1751-61. doi: 10.1089/ten.tea.2008.0254.
3
Cell migration into scaffolds under co-culture conditions in a microfluidic platform.
Lab Chip. 2009 Jan 21;9(2):269-75. doi: 10.1039/b807585a. Epub 2008 Oct 31.
5
Vascularization in tissue engineering.
Trends Biotechnol. 2008 Aug;26(8):434-41. doi: 10.1016/j.tibtech.2008.04.009. Epub 2008 Jun 26.
6
Cardiac tissue engineering using perfusion bioreactor systems.
Nat Protoc. 2008;3(4):719-38. doi: 10.1038/nprot.2008.40.
7
Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature.
Blood. 2008 May 1;111(9):4551-8. doi: 10.1182/blood-2007-10-118273. Epub 2008 Feb 6.
8
Strategic directions in tissue engineering.
Tissue Eng. 2007 Dec;13(12):2827-37. doi: 10.1089/ten.2007.0335.
10
Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes.
Tissue Eng. 2006 Aug;12(8):2093-104. doi: 10.1089/ten.2006.12.2093.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验