Suppr超能文献

凭处方取药记录作为一种筛选工具,以识别抗抑郁药的不依从性。

Prescription refill records as a screening tool to identify antidepressant non-adherence.

机构信息

Division of Pharmaceutical Outcomes and Policy, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

出版信息

Pharmacoepidemiol Drug Saf. 2010 Jan;19(1):33-7. doi: 10.1002/pds.1881.

Abstract

PURPOSE

Non-adherence is a significant problem with antidepressants. Identifying patients at highest risk for discontinuing antidepressant treatment can be used to target clinical management. Accordingly, our purpose was to determine the shortest gap in medication supply that is predictive of discontinuation, while minimizing false positive results.

METHODS

A retrospective cohort study of medical and prescription claims from a national health plan affiliated with i3 Innovus. Sensitivities, specificities, and positive and negative predictive values were calculated for gap lengths to assess how well they predicted discontinuation. Continuously insured individuals aged 18-65 with newly diagnosed major depression and an antidepressant prescription within 45 days of diagnosis were included. Gap length was defined as the maximum number of continuous days without medication supply during acute phase treatment. Discontinuation was defined as a continuous gap of 30 or more days between an expected refill and actual refill.

RESULTS

Of 4545 eligible patients, 73% discontinued antidepressant treatment during the study period. A maximum continuous gap of 14 days had a sensitivity of 87% and a specificity of 82% for predicting discontinuation. In analyses that varied the way gaps and discontinuation were defined, gap lengths between 8 and 19 days were highly predictive of discontinuation without exceeding a 20% false positive rate.

CONCLUSIONS

Based on administrative pharmacy records, screening for gaps in medication supply of at least 14 days can accurately identify four of every five patients at risk for discontinuing. This early indicator can be used to target clinical interventions.

摘要

目的

抗抑郁药的不依从性是一个严重的问题。确定最有可能停止抗抑郁治疗的患者,可以用于针对临床管理。因此,我们的目的是确定预测停药的最短药物供应缺口,同时最大限度地减少假阳性结果。

方法

这是一项回顾性队列研究,来自与 i3 Innovus 相关的国家健康计划的医疗和处方数据。计算缺口长度的敏感性、特异性、阳性预测值和阴性预测值,以评估它们对停药的预测能力。纳入连续投保的年龄在 18-65 岁之间、新诊断为重度抑郁症且在诊断后 45 天内有抗抑郁药处方的个体。缺口长度定义为急性治疗期间连续无药物供应的最大天数。停药定义为预期补充和实际补充之间连续 30 天或更长时间的空白。

结果

在 4545 名符合条件的患者中,73%的患者在研究期间停止了抗抑郁治疗。最大连续缺口 14 天预测停药的敏感性为 87%,特异性为 82%。在分析不同缺口和停药定义方式的结果中,8-19 天的缺口长度高度预测停药,而假阳性率不超过 20%。

结论

根据行政药物记录,至少 14 天的药物供应缺口筛查可以准确识别五分之四有停药风险的患者。这一早期指标可用于针对临床干预措施。

相似文献

引用本文的文献

2
Air pollution and serious bleeding events in high-risk older adults.空气污染与高危老年人严重出血事件。
Environ Res. 2024 Jun 15;251(Pt 1):118628. doi: 10.1016/j.envres.2024.118628. Epub 2024 Mar 7.
7
Advancing the Science and Practice of Medication Adherence.推进药物依从性的科学和实践。
J Gen Intern Med. 2018 Feb;33(2):216-222. doi: 10.1007/s11606-017-4198-4.
9
Antidepressant Medication Treatment and Risk of Death.抗抑郁药物治疗与死亡风险。
J Clin Psychopharmacol. 2016 Oct;36(5):445-52. doi: 10.1097/JCP.0000000000000545.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验