Anal Chem. 2010 Jan 1;82(1):73-6. doi: 10.1021/ac902595f.
Electrochemical sensors employing redox-tagged, electrode-bound oligonucleotides have emerged as a promising new platform for the reagentless detection of molecular analytes. Signal generation in these sensors is linked to specific, binding-induced changes in the efficiency with which an attached redox tag approaches and exchanges electrons with the interrogating electrode. We present here a straightforward means of optimizing the signal gain of these sensors that exploits this mechanism. Specifically, using square-wave voltammetry, which is exquisitely sensitive to electrode reaction rates, we can tune the frequency of the voltammetric measurements to preferentially enhance the signal associated with either the unbound or target-bound conformations of the probe. This allows us to control not only the magnitude of the signal gain associated with target binding but also the sign of the signal change, generating "signal-on" or "signal-off" sensors. This optimization parameter appears to be quite general: we show here that tuning the square-wave frequency can significantly enhance the gain of the sensors directed against specific oligonucleotide sequences, small molecules, proteins, and protein-small molecule interactions.
采用氧化还原标记的、电极结合的寡核苷酸的电化学传感器已经成为一种很有前途的新平台,可用于无试剂检测分子分析物。这些传感器中的信号产生与特定的、结合诱导的变化相关联,这种变化影响附着的氧化还原标记与检测电极接近并交换电子的效率。我们在这里提出了一种优化这种传感器信号增益的简单方法,该方法利用了这种机制。具体来说,我们可以使用方波伏安法(对电极反应速率非常敏感)来调整伏安测量的频率,以优先增强与探针的未结合或目标结合构象相关的信号。这使我们不仅可以控制与目标结合相关的信号增益的大小,还可以控制信号变化的符号,产生“信号开启”或“信号关闭”传感器。这种优化参数似乎非常通用:我们在这里表明,调整方波频率可以显著增强针对特定寡核苷酸序列、小分子、蛋白质和蛋白质-小分子相互作用的传感器的增益。