Department of Chemistry and Biochemistry, and ‡Center for Bioengineering, University of California Santa Barbara , Santa Barbara, California 93106, United States.
Anal Chem. 2016 Dec 6;88(23):11654-11662. doi: 10.1021/acs.analchem.6b03227. Epub 2016 Nov 22.
Electrochemical DNA (E-DNA) sensors have emerged as a promising class of biosensors capable of detecting a wide range of molecular analytes (nucleic acids, proteins, small molecules, inorganic ions) without the need for exogenous reagents or wash steps. In these sensors, a binding-induced conformational change in an electrode-bound "probe" (a target-binding nucleic acid or nucleic-acid-peptide chimera) alters the location of an attached redox reporter, leading to a change in electron transfer that is typically monitored using square-wave voltammetry. Because signaling in this class of sensors relies on binding-induced changes in electron transfer rate, the signal gain of such sensors (change in signal upon the addition of saturating target) is dependent on the frequency of the square-wave potential pulse used to interrogate them, with the optimal square-wave frequency depending on the structure of the probe, the nature of the redox reporter, and other features of the sensor. Here, we show that, because it alters the driving force of the redox reaction and thus electron transfer kinetics, signal gain in this class of sensors is also strongly dependent on the amplitude of the square-wave potential pulse. Specifically, we show here that the simultaneous optimization of square-wave frequency and amplitude produces large (often more than 2-fold) increases in the signal gain of a wide range of E-DNA-type sensors.
电化学 DNA(E-DNA)传感器已成为一类很有前途的生物传感器,能够在无需外源试剂或洗涤步骤的情况下检测广泛的分子分析物(核酸、蛋白质、小分子、无机离子)。在这些传感器中,电极结合的“探针”(靶标结合核酸或核酸-肽嵌合体)的结合诱导构象变化会改变附着的氧化还原报告分子的位置,从而导致电子转移的变化,通常使用方波伏安法进行监测。由于这类传感器中的信号依赖于结合诱导的电子转移速率变化,因此这种传感器的信号增益(加入饱和靶标时信号的变化)取决于用于检测它们的方波电势脉冲的频率,最佳方波频率取决于探针的结构、氧化还原报告分子的性质以及传感器的其他特征。在这里,我们表明,由于它改变了氧化还原反应的驱动力,从而改变了电子转移动力学,因此这类传感器的信号增益也强烈依赖于方波电势脉冲的幅度。具体来说,我们在这里表明,同时优化方波频率和幅度会使广泛的 E-DNA 型传感器的信号增益大幅增加(通常超过 2 倍)。