Molecular Foundry, Lawrence Berkeley National Lab, Berkeley, California, USA.
J Phys Chem B. 2010 Jan 14;114(1):215-9. doi: 10.1021/jp908585u.
In free bilayers, the fluid to gel main phase transition of a monofluorinated phospholipid (F-DPPC) transforms a disordered fluid bilayer into a fully interdigitated monolayer consisting of ordered acyl tails. This transformation results in an increase in molecular area and decrease in bilayer thickness. We show that when confined in patches near a solid surface this reorganization proceeds under constraints of planar topography and total surface area. One consequence of these constraints is to limit the complete formation of the energetically favored, interdigitated gel phase. The noninterdigitated lipids experience enhanced lateral tension, due to the expansion of the growing interdigitated phase within the constant area. The corresponding rise in equilibrium transition temperatures produces supercooled lipids that vitrify when cooled further. Ultimately, this frustrated phase change reflects a coupling between dynamics and thermodynamics and gives rise to an unusual phase coexistence characterized by the presence of two qualitatively different gel phases.
在自由双层中,单氟化磷脂(F-DPPC)的流态到凝胶的主相变将无序的流体双层转变为完全交错的单层,由有序的酰基尾部组成。这种转变导致分子面积增加,双层厚度减小。我们表明,当在靠近固体表面的斑块中受到约束时,这种重组会受到平面形貌和总表面积的限制。这些约束的一个后果是限制完全形成能量有利的交错凝胶相。由于在恒定面积内交错相的扩展,非交错的脂质会经历增强的侧向张力。平衡转变温度的相应升高产生过冷脂质,当进一步冷却时会玻璃化。最终,这种受挫的相变反映了动力学和热力学之间的耦合,并导致出现一种异常的相共存,其特征是存在两种定性不同的凝胶相。