Glazer Dariya S, Radmer Randall J, Altman Russ B
Department of Genetics, Stanford University, 318 Campus Drive Clark Center S240 Stanford, CA 94305, USA.
Pac Symp Biocomput. 2008:332-43.
As structural genomics efforts succeed in solving protein structures with novel folds, the number of proteins with known structures but unknown functions increases. Although experimental assays can determine the functions of some of these molecules, they can be expensive and time consuming. Computational approaches can assist in identifying potential functions of these molecules. Possible functions can be predicted based on sequence similarity, genomic context, expression patterns, structure similarity, and combinations of these. We investigated whether simulations of protein dynamics can expose functional sites that are not apparent to the structure-based function prediction methods in static crystal structures. Focusing on Ca2+ binding, we coupled a machine learning tool that recognizes functional sites, FEATURE, with Molecular Dynamics (MD) simulations. Treating molecules as dynamic entities can improve the ability of structure-based function prediction methods to annotate possible functional sites.
随着结构基因组学在解析具有新颖折叠的蛋白质结构方面取得成功,已知结构但功能未知的蛋白质数量不断增加。尽管实验分析可以确定其中一些分子的功能,但这些方法可能既昂贵又耗时。计算方法有助于识别这些分子的潜在功能。可以基于序列相似性、基因组背景、表达模式、结构相似性以及这些因素的组合来预测可能的功能。我们研究了蛋白质动力学模拟是否能够揭示在静态晶体结构中基于结构的功能预测方法无法发现的功能位点。以钙离子结合为例,我们将一种识别功能位点的机器学习工具FEATURE与分子动力学(MD)模拟相结合。将分子视为动态实体可以提高基于结构的功能预测方法注释可能功能位点的能力。