Suppr超能文献

Graphle:大型密集图的交互式探索。

Graphle: Interactive exploration of large, dense graphs.

机构信息

Department of Computer Science, Princeton University, Princeton, NJ 08540, USA.

出版信息

BMC Bioinformatics. 2009 Dec 14;10:417. doi: 10.1186/1471-2105-10-417.

Abstract

BACKGROUND

A wide variety of biological data can be modeled as network structures, including experimental results (e.g. protein-protein interactions), computational predictions (e.g. functional interaction networks), or curated structures (e.g. the Gene Ontology). While several tools exist for visualizing large graphs at a global level or small graphs in detail, previous systems have generally not allowed interactive analysis of dense networks containing thousands of vertices at a level of detail useful for biologists. Investigators often wish to explore specific portions of such networks from a detailed, gene-specific perspective, and balancing this requirement with the networks' large size, complex structure, and rich metadata is a substantial computational challenge.

RESULTS

Graphle is an online interface to large collections of arbitrary undirected, weighted graphs, each possibly containing tens of thousands of vertices (e.g. genes) and hundreds of millions of edges (e.g. interactions). These are stored on a centralized server and accessed efficiently through an interactive Java applet. The Graphle applet allows a user to examine specific portions of a graph, retrieving the relevant neighborhood around a set of query vertices (genes). This neighborhood can then be refined and modified interactively, and the results can be saved either as publication-quality images or as raw data for further analysis. The Graphle web site currently includes several hundred biological networks representing predicted functional relationships from three heterogeneous data integration systems: S. cerevisiae data from bioPIXIE, E. coli data using MEFIT, and H. sapiens data from HEFalMp.

CONCLUSIONS

Graphle serves as a search and visualization engine for biological networks, which can be managed locally (simplifying collaborative data sharing) and investigated remotely. The Graphle framework is freely downloadable and easily installed on new servers, allowing any lab to quickly set up a Graphle site from which their own biological network data can be shared online.

摘要

背景

各种生物数据都可以建模为网络结构,包括实验结果(例如蛋白质-蛋白质相互作用)、计算预测(例如功能相互作用网络)或经过整理的结构(例如基因本体论)。虽然有几个工具可以用于全局水平上可视化大型图形或详细的小型图形,但以前的系统通常不允许对包含数千个顶点的密集网络进行交互式分析,而这些网络的详细程度对于生物学家来说是有用的。研究人员通常希望从详细的、特定基因的角度探索这些网络的特定部分,而平衡这种要求与网络的大规模、复杂结构和丰富的元数据是一个重大的计算挑战。

结果

Graphle 是一个在线接口,用于访问任意无向、加权图形的大型集合,每个图形都可能包含数千个顶点(例如基因)和数亿个边(例如相互作用)。这些图形存储在一个集中的服务器上,并通过一个交互式 Java 小程序高效地访问。Graphle 小程序允许用户检查图形的特定部分,检索一组查询顶点(基因)周围的相关邻域。然后可以对该邻域进行交互式细化和修改,并将结果保存为出版质量的图像或原始数据,以进行进一步分析。Graphle 网站目前包括数百个生物网络,代表了来自三个异构数据集成系统的预测功能关系:来自 bioPIXIE 的 S. cerevisiae 数据、使用 MEFIT 的 E. coli 数据和来自 HEFalMp 的 H. sapiens 数据。

结论

Graphle 是生物网络的搜索和可视化引擎,可以在本地进行管理(简化协作数据共享)和远程调查。Graphle 框架是免费下载的,并且易于在新服务器上安装,允许任何实验室都可以快速设置一个 Graphle 站点,从该站点可以在线共享他们自己的生物网络数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8787/2803856/e9e9265a184b/1471-2105-10-417-1.jpg

相似文献

1
Graphle: Interactive exploration of large, dense graphs.
BMC Bioinformatics. 2009 Dec 14;10:417. doi: 10.1186/1471-2105-10-417.
2
Cobweb: a Java applet for network exploration and visualisation.
Bioinformatics. 2011 Jun 15;27(12):1725-6. doi: 10.1093/bioinformatics/btr195. Epub 2011 Apr 12.
3
GOLEM: an interactive graph-based gene-ontology navigation and analysis tool.
BMC Bioinformatics. 2006 Oct 10;7:443. doi: 10.1186/1471-2105-7-443.
5
MetNetGE: interactive views of biological networks and ontologies.
BMC Bioinformatics. 2010 Sep 17;11:469. doi: 10.1186/1471-2105-11-469.
6
Visualization of protein interaction networks: problems and solutions.
BMC Bioinformatics. 2013;14 Suppl 1(Suppl 1):S1. doi: 10.1186/1471-2105-14-S1-S1. Epub 2013 Jan 14.
7
cisPath: an R/Bioconductor package for cloud users for visualization and management of functional protein interaction networks.
BMC Syst Biol. 2015;9 Suppl 1(Suppl 1):S1. doi: 10.1186/1752-0509-9-S1-S1. Epub 2015 Jan 21.
8
JNets: exploring networks by integrating annotation.
BMC Bioinformatics. 2009 Mar 26;10:95. doi: 10.1186/1471-2105-10-95.
9
PathSys: integrating molecular interaction graphs for systems biology.
BMC Bioinformatics. 2006 Feb 7;7:55. doi: 10.1186/1471-2105-7-55.
10
NeAT: a toolbox for the analysis of biological networks, clusters, classes and pathways.
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W444-51. doi: 10.1093/nar/gkn336. Epub 2008 Jun 4.

引用本文的文献

1
BioNetApp: An interactive visual data analysis platform for molecular expressions.
PLoS One. 2019 Feb 22;14(2):e0211277. doi: 10.1371/journal.pone.0211277. eCollection 2019.
3
Methylation profiling of serum DNA from hepatocellular carcinoma patients using an Infinium Human Methylation 450 BeadChip.
Hepatol Int. 2013 Jul;7(3):893-900. doi: 10.1007/s12072-013-9437-0. Epub 2013 Sep 3.
4
A web-based protein interaction network visualizer.
BMC Bioinformatics. 2014 May 6;15:129. doi: 10.1186/1471-2105-15-129.
5
Tissue-specific functional networks for prioritizing phenotype and disease genes.
PLoS Comput Biol. 2012;8(9):e1002694. doi: 10.1371/journal.pcbi.1002694. Epub 2012 Sep 27.
6
Enabling dynamic network analysis through visualization in TVNViewer.
BMC Bioinformatics. 2012 Aug 16;13:204. doi: 10.1186/1471-2105-13-204.
8
Inference of functional properties from large-scale analysis of enzyme superfamilies.
J Biol Chem. 2012 Jan 2;287(1):35-42. doi: 10.1074/jbc.R111.283408. Epub 2011 Nov 8.
9
TVNViewer: an interactive visualization tool for exploring networks that change over time or space.
Bioinformatics. 2011 Jul 1;27(13):1880-1. doi: 10.1093/bioinformatics/btr273. Epub 2011 May 5.
10

本文引用的文献

1
VANLO--interactive visual exploration of aligned biological networks.
BMC Bioinformatics. 2009 Oct 12;10:327. doi: 10.1186/1471-2105-10-327.
2
VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology.
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W115-21. doi: 10.1093/nar/gkp406. Epub 2009 May 21.
3
Exploring the human genome with functional maps.
Genome Res. 2009 Jun;19(6):1093-106. doi: 10.1101/gr.082214.108. Epub 2009 Feb 26.
4
The Sleipnir library for computational functional genomics.
Bioinformatics. 2008 Jul 1;24(13):1559-61. doi: 10.1093/bioinformatics/btn237. Epub 2008 May 21.
5
KEGG for linking genomes to life and the environment.
Nucleic Acids Res. 2008 Jan;36(Database issue):D480-4. doi: 10.1093/nar/gkm882. Epub 2007 Dec 12.
6
Construction, visualisation, and clustering of transcription networks from microarray expression data.
PLoS Comput Biol. 2007 Oct;3(10):2032-42. doi: 10.1371/journal.pcbi.0030206.
7
Integration of biological networks and gene expression data using Cytoscape.
Nat Protoc. 2007;2(10):2366-82. doi: 10.1038/nprot.2007.324.
8
Tools for visually exploring biological networks.
Bioinformatics. 2007 Oct 15;23(20):2651-9. doi: 10.1093/bioinformatics/btm401. Epub 2007 Aug 25.
9
Context-sensitive data integration and prediction of biological networks.
Bioinformatics. 2007 Sep 1;23(17):2322-30. doi: 10.1093/bioinformatics/btm332. Epub 2007 Jun 28.
10
Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae.
Biochim Biophys Acta. 2007 Mar;1771(3):353-404. doi: 10.1016/j.bbalip.2007.01.015. Epub 2007 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验