Department of Computer Science, Gulf University for Science and Technology, Mishref, Kuwait.
Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States of America.
PLoS One. 2019 Feb 22;14(2):e0211277. doi: 10.1371/journal.pone.0211277. eCollection 2019.
Systems biology faces two key challenges when dealing with large amounts of disparate data produced by different experiments: the integration of results across different experiments, and the extraction of meaningful information from the data produced by these experiments. An ongoing challenge is to provide better tools that can mine data patterns that could not have been discovered through simple visualization. Such mining capabilities also need to be coupled with intuitive visualization to portray those findings. We introduce a software toolbox entitled BioNetApp to mine these patterns and visualize them across all experiments.
BioNetApp is an interactive visual data mining software for analyzing high-volume molecular expression data obtained from multiple 'omics experiments. By integrating visualization, statistical methods, and data mining techniques, BioNetApp can perform interactive correlative and comparative analysis along time-course studies of molecular expression data. Correlation analysis provides several visualization features such as Kamada-Kawai, Fruchterman-Reingold Spring embedding network layouts, in addition to single circle, multiple circle and heatmap layouts, whereas comparative analysis presents expression-data distributions across samples, groups, and time points with boxplot display, outlier detection, and data curve fitting. BioNetApp also provides data clustering based on molecular concentrations using Self Organizing Maps (SOM), K-Means, K-Medoids, and Farthest First algorithms.
BioNetApp has been utilized in a metabolomics study to investigate the metabolite abundance changes in alcohol induced fatty liver, where pair-wise analyses of metabolome concentration revealed correlation networks and interesting patterns in the metabolomics dataset. This study case demonstrates the effectiveness of the BioNetApp software as an interactive visual analysis tool for molecular expression data in systems biology. The BioNetApp software is freely available under GNU GPL license and can be downloaded (including the case-study data and user-manual) at: https://doi.org/10.5281/zenodo.2563129.
系统生物学在处理来自不同实验的大量不同数据时面临两个关键挑战:不同实验结果的整合,以及从这些实验产生的数据中提取有意义的信息。一个持续的挑战是提供更好的工具,能够挖掘无法通过简单可视化发现的数据模式。这种挖掘功能还需要与直观的可视化相结合,以描绘这些发现。我们引入了一个名为 BioNetApp 的软件工具箱,用于挖掘这些模式并在所有实验中进行可视化。
BioNetApp 是一种交互式可视数据挖掘软件,用于分析从多个“组学”实验中获得的大量分子表达数据。通过整合可视化、统计方法和数据挖掘技术,BioNetApp 可以对分子表达数据的时间过程研究进行交互式相关和比较分析。相关性分析提供了几种可视化特征,如 Kamada-Kawai、Fruchterman-Reingold 弹簧嵌入网络布局,以及单个圆圈、多个圆圈和热图布局,而比较分析则以箱线图显示、异常值检测和数据曲线拟合的方式呈现样本、组和时间点之间的表达数据分布。BioNetApp 还提供了基于分子浓度的基于数据聚类,使用自组织映射 (SOM)、K-Means、K-Medoids 和最远优先算法。
BioNetApp 已在代谢组学研究中用于研究酒精诱导的脂肪肝中代谢物丰度的变化,其中代谢组浓度的成对分析揭示了代谢组学数据集中的相关网络和有趣模式。这个研究案例证明了 BioNetApp 软件作为系统生物学中分子表达数据的交互式可视化分析工具的有效性。BioNetApp 软件可在 GNU GPL 许可证下免费获得,并可在以下网址下载(包括案例研究数据和用户手册):https://doi.org/10.5281/zenodo.2563129.