Suppr超能文献

通过熔融纺丝和静电纺丝制备可生物吸收的弹性血管组织工程支架。

Bioresorbable elastomeric vascular tissue engineering scaffolds via melt spinning and electrospinning.

机构信息

Fiber and Polymer Science, North Carolina State University, Raleigh, NC 27695-8301, USA.

出版信息

Acta Biomater. 2010 Jun;6(6):1958-67. doi: 10.1016/j.actbio.2009.12.007. Epub 2009 Dec 11.

Abstract

Current surgical therapy for diseased vessels less than 6mm in diameter involves bypass grafting with autologous arteries or veins. Although this surgical practice is common, it has significant limitations and complications, such as occlusion, intimal hyperplasia and compliance mismatch. As a result, cardiovascular biomaterials research has been motivated to develop tissue-engineered blood vessel substitutes. In this study, vascular tissue engineering scaffolds were fabricated using two different approaches, namely melt spinning and electrospinning. Small diameter tubes were fabricated from an elastomeric bioresorbable 50:50 poly(l-lactide-co-epsilon-caprolactone) copolymer having dimensions of 5mm in diameter and porosity of over 75%. Scaffolds electrospun from two different solvents, acetone and 1,1,1,3,3,3-hexafluoro-2-propanol were compared in terms of their morphology, mechanical properties and cell viability. Overall, the mechanical properties of the prototype tubes exceeded the transverse tensile values of natural arteries of similar caliber. In addition to spinning the polymer separately into melt-spun and electrospun constructs, the approach in this study has successfully demonstrated that these two techniques can be combined to produce double-layered tubular scaffolds containing both melt-spun macrofibers (<200microm in diameter) and electrospun submicron fibers (>400nm in diameter). Since the vascular wall has a complex multilayered architecture and unique mechanical properties, there remain several significant challenges before a successful tissue-engineered artery is achieved.

摘要

目前,直径小于 6 毫米的病变血管的外科治疗方法包括使用自体动脉或静脉进行旁路移植。尽管这种手术方法很常见,但它存在显著的局限性和并发症,如闭塞、内膜增生和顺应性不匹配。因此,心血管生物材料研究已经促使人们开发组织工程血管替代物。在这项研究中,使用两种不同的方法制造了血管组织工程支架,即熔融纺丝和静电纺丝。从小直径管由弹性生物可吸收的 50:50 聚(L-丙交酯-共-ε-己内酯)共聚物制造,其尺寸为 5mm 直径和超过 75%的孔隙率。从两种不同溶剂,丙酮和 1,1,1,3,3,3-六氟-2-丙醇静电纺丝的支架在形态、机械性能和细胞活力方面进行了比较。总体而言,原型管的机械性能超过了类似口径的天然动脉的横向拉伸值。除了将聚合物分别纺成熔融纺丝和静电纺丝结构之外,本研究中的方法还成功地证明了这两种技术可以结合使用,以生产包含熔融纺丝宏观纤维(<200μm 直径)和静电纺丝亚微米纤维(>400nm 直径)的双层管状支架。由于血管壁具有复杂的多层结构和独特的机械性能,在成功制造组织工程化动脉之前,仍然存在几个重大挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验