Suppr超能文献

一群胆碱能运动前神经元调节小鼠的运动活动。

A cluster of cholinergic premotor interneurons modulates mouse locomotor activity.

机构信息

Howard Hughes Medical Institute, Kavli Institute for Brain Science, Department of Neuroscience, Columbia University, New York, NY 10032, USA.

出版信息

Neuron. 2009 Dec 10;64(5):645-62. doi: 10.1016/j.neuron.2009.10.017.

Abstract

Mammalian motor programs are controlled by networks of spinal interneurons that set the rhythm and intensity of motor neuron firing. Motor neurons have long been known to receive prominent "C bouton" cholinergic inputs from spinal interneurons, but the source and function of these synaptic inputs have remained obscure. We show here that the transcription factor Pitx2 marks a small cluster of spinal cholinergic interneurons, V0(C) neurons, that represents the sole source of C bouton inputs to motor neurons. The activity of these cholinergic interneurons is tightly phase locked with motor neuron bursting during fictive locomotor activity, suggesting a role in the modulation of motor neuron firing frequency. Genetic inactivation of the output of these neurons impairs a locomotor task-dependent increase in motor neuron firing and muscle activation. Thus, V0(C) interneurons represent a defined class of spinal cholinergic interneurons with an intrinsic neuromodulatory role in the control of locomotor behavior.

摘要

哺乳动物的运动程序由脊髓中间神经元网络控制,这些网络设定运动神经元放电的节律和强度。长期以来,运动神经元一直被认为会从脊髓中间神经元接收突出的“C 末梢”胆碱能输入,但这些突触输入的来源和功能仍不清楚。我们在这里表明,转录因子 Pitx2 标记了一小群脊髓胆碱能中间神经元,即 V0(C)神经元,它们是运动神经元 C 末梢输入的唯一来源。在虚拟运动活动期间,这些胆碱能中间神经元的活动与运动神经元爆发紧密地相位锁定,这表明它们在调节运动神经元放电频率方面具有重要作用。这些神经元输出的遗传失活会损害运动神经元放电和肌肉激活的运动任务依赖性增加。因此,V0(C)中间神经元代表了一类特定的脊髓胆碱能中间神经元,它们在控制运动行为方面具有内在的神经调制作用。

相似文献

1
A cluster of cholinergic premotor interneurons modulates mouse locomotor activity.
Neuron. 2009 Dec 10;64(5):645-62. doi: 10.1016/j.neuron.2009.10.017.
2
Locomotor-like rhythms in a genetically distinct cluster of interneurons in the mammalian spinal cord.
J Neurophysiol. 2005 Mar;93(3):1439-49. doi: 10.1152/jn.00647.2004. Epub 2004 Oct 20.
5
Sensory modulation of locomotor-like membrane oscillations in Hb9-expressing interneurons.
J Neurophysiol. 2010 Jun;103(6):3407-23. doi: 10.1152/jn.00996.2009. Epub 2010 Apr 14.
6
Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord.
J Neurosci. 2009 Sep 16;29(37):11601-13. doi: 10.1523/JNEUROSCI.1612-09.2009.
7
Activity of Renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice.
J Neurosci. 2006 May 17;26(20):5320-8. doi: 10.1523/JNEUROSCI.5127-05.2006.
8
Heterogeneous electrotonic coupling and synchronization of rhythmic bursting activity in mouse Hb9 interneurons.
J Neurophysiol. 2007 Oct;98(4):2370-81. doi: 10.1152/jn.00338.2007. Epub 2007 Aug 22.
9
Motor neuron-specific overexpression of the presynaptic choline transporter: impact on motor endurance and evoked muscle activity.
Neuroscience. 2010 Dec 29;171(4):1041-53. doi: 10.1016/j.neuroscience.2010.09.057. Epub 2010 Oct 1.
10
Electrical coupling between locomotor-related excitatory interneurons in the mammalian spinal cord.
J Neurosci. 2006 Aug 16;26(33):8477-83. doi: 10.1523/JNEUROSCI.0395-06.2006.

引用本文的文献

2
Central Pattern Generators in Spinal Cord Injury: Mechanisms, Modulation, and Therapeutic Strategies for Motor Recovery.
JOR Spine. 2025 Aug 11;8(3):e70100. doi: 10.1002/jsp2.70100. eCollection 2025 Sep.
3
Targeting Spinal Interneurons for Respiratory Recovery After Spinal Cord Injury.
Cells. 2025 Feb 15;14(4):288. doi: 10.3390/cells14040288.
4
A cholinergic spinal pathway for the adaptive control of breathing.
bioRxiv. 2025 Jan 20:2025.01.20.633641. doi: 10.1101/2025.01.20.633641.
5
Sex-specific astrocyte regulation of spinal motor circuits by Nkx6.1.
Cell Rep. 2025 Jan 28;44(1):115121. doi: 10.1016/j.celrep.2024.115121. Epub 2024 Dec 27.
6
Cholinergic modulation of upper airway control: maturational changes and mechanisms at cellular and synaptic levels.
J Neurophysiol. 2025 Jan 1;133(1):46-59. doi: 10.1152/jn.00165.2024. Epub 2024 Nov 28.
7
Arid3c identifies an uncharacterized subpopulation of V2 interneurons during embryonic spinal cord development.
Front Cell Neurosci. 2024 Oct 16;18:1466056. doi: 10.3389/fncel.2024.1466056. eCollection 2024.
8
Molecular and Cellular Mechanisms of Motor Circuit Development.
J Neurosci. 2024 Oct 2;44(40):e1238242024. doi: 10.1523/JNEUROSCI.1238-24.2024.
10
UNC-30/PITX coordinates neurotransmitter identity with postsynaptic GABA receptor clustering.
Development. 2024 Aug 15;151(16). doi: 10.1242/dev.202733. Epub 2024 Aug 27.

本文引用的文献

1
Stringent specificity in the construction of a GABAergic presynaptic inhibitory circuit.
Cell. 2009 Oct 2;139(1):161-74. doi: 10.1016/j.cell.2009.08.027.
2
Activity of Hb9 interneurons during fictive locomotion in mouse spinal cord.
J Neurosci. 2009 Sep 16;29(37):11601-13. doi: 10.1523/JNEUROSCI.1612-09.2009.
3
Hox networks and the origins of motor neuron diversity.
Curr Top Dev Biol. 2009;88:169-200. doi: 10.1016/S0070-2153(09)88006-X.
4
Circuits controlling vertebrate locomotion: moving in a new direction.
Nat Rev Neurosci. 2009 Jul;10(7):507-18. doi: 10.1038/nrn2608.
7
Distinct mechanisms for top-down control of neural gain and sensitivity in the owl optic tectum.
Neuron. 2008 Nov 26;60(4):698-708. doi: 10.1016/j.neuron.2008.09.013.
10
Acetylcholine contributes through muscarinic receptors to attentional modulation in V1.
Nature. 2008 Aug 28;454(7208):1110-4. doi: 10.1038/nature07141. Epub 2008 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验