Suppr超能文献

功能连接:收缩估计和随机化检验。

Functional connectivity: shrinkage estimation and randomization test.

机构信息

Center for Statistical Sciences, Brown University, Providence, RI, USA.

出版信息

Neuroimage. 2010 Feb 15;49(4):3005-14. doi: 10.1016/j.neuroimage.2009.12.022. Epub 2009 Dec 16.

Abstract

We develop new statistical methods for estimating functional connectivity between components of a multivariate time series and for testing differences in functional connectivity across experimental conditions. Here, we characterize functional connectivity by partial coherence, which identifies the frequency band (or bands) that drives the direct linear association between any pair of components of a multivariate time series after removing the linear effects of the other components. Partial coherence can be efficiently estimated using the inverse of the spectral density matrix. However, when the number of components is large and the components of the multivariate time series are highly correlated, the spectral density matrix estimate may be numerically unstable and consequently gives partial coherence estimates that are highly variable. To address the problem of numerical instability, we propose a shrinkage-based estimator which is a weighted average of a smoothed periodogram estimator and a scaled identity matrix with frequency-specific weight computed objectively so that the resulting shrinkage estimator minimizes the mean-squared error criterion. Compared to typical smoothing-based estimators, the shrinkage estimator is more computationally stable and gives a lower mean squared error. In addition, we develop a randomization method for testing differences in functional connectivity networks between experimental conditions. Finally, we report results from numerical experiments and analyze an EEG data set recorded during a visually-guided hand movement task.

摘要

我们开发了新的统计方法来估计多元时间序列成分之间的功能连接,并测试功能连接在不同实验条件下的差异。在这里,我们通过偏相干来描述功能连接,偏相干识别出频率带(或带),在去除多元时间序列中其他成分的线性影响后,驱动任何两个成分之间的直接线性关联。偏相干可以使用谱密度矩阵的逆来有效地估计。然而,当成分数量很大且多元时间序列的成分高度相关时,谱密度矩阵的估计可能在数值上不稳定,从而导致偏相干估计值高度变化。为了解决数值不稳定的问题,我们提出了一种基于收缩的估计器,它是平滑周期图估计器和缩放单位矩阵的加权平均值,其中频率特定的权重是通过客观计算得出的,以便所得到的收缩估计器最小化均方误差准则。与典型的基于平滑的估计器相比,收缩估计器在计算上更稳定,并给出更低的均方误差。此外,我们开发了一种随机化方法来测试不同实验条件下功能连接网络的差异。最后,我们报告了数值实验的结果,并分析了在视觉引导手部运动任务中记录的 EEG 数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/522f/3128923/a469890b2ed4/nihms-168456-f0001.jpg

相似文献

1
Functional connectivity: shrinkage estimation and randomization test.功能连接:收缩估计和随机化检验。
Neuroimage. 2010 Feb 15;49(4):3005-14. doi: 10.1016/j.neuroimage.2009.12.022. Epub 2009 Dec 16.
5
Graphical modelling for brain connectivity via partial coherence.基于偏相干的脑连接性图形建模。
J Neurosci Methods. 2009 Jun 15;180(2):374-83. doi: 10.1016/j.jneumeth.2009.04.003. Epub 2009 Apr 16.
9
MNE software for processing MEG and EEG data.MEG 和 EEG 数据处理的 MNE 软件。
Neuroimage. 2014 Feb 1;86:446-60. doi: 10.1016/j.neuroimage.2013.10.027. Epub 2013 Oct 24.

引用本文的文献

3
Adaptive Bayesian Spectral Analysis of High-dimensional Nonstationary Time Series.高维非平稳时间序列的自适应贝叶斯谱分析
J Comput Graph Stat. 2021;30(3):794-807. doi: 10.1080/10618600.2020.1868305. Epub 2021 Mar 1.
7
Moderating effects of music on resting state networks.音乐对静息态网络的调节作用。
Brain Res. 2012 Apr 4;1447:53-64. doi: 10.1016/j.brainres.2012.01.064. Epub 2012 Feb 2.

本文引用的文献

1
MATLAB toolbox for functional connectivity.用于功能连接性的MATLAB工具箱。
Neuroimage. 2009 Oct 1;47(4):1590-607. doi: 10.1016/j.neuroimage.2009.05.089. Epub 2009 Jun 8.
2
Graphical modelling for brain connectivity via partial coherence.基于偏相干的脑连接性图形建模。
J Neurosci Methods. 2009 Jun 15;180(2):374-83. doi: 10.1016/j.jneumeth.2009.04.003. Epub 2009 Apr 16.
8
Partial correlation analysis for the identification of synaptic connections.用于识别突触连接的偏相关分析。
Biol Cybern. 2003 Oct;89(4):289-302. doi: 10.1007/s00422-003-0400-3. Epub 2003 Oct 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验