Suppr超能文献

静息态功能磁共振成像测量的脑连接的时频动态

Time-frequency dynamics of resting-state brain connectivity measured with fMRI.

机构信息

Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.

出版信息

Neuroimage. 2010 Mar;50(1):81-98. doi: 10.1016/j.neuroimage.2009.12.011. Epub 2009 Dec 16.

Abstract

Most studies of resting-state functional connectivity using fMRI employ methods that assume temporal stationarity, such as correlation and data-driven decompositions computed across the duration of the scan. However, evidence from both task-based fMRI studies and animal electrophysiology suggests that functional connectivity may exhibit dynamic changes within time scales of seconds to minutes. In the present study, we investigated the dynamic behavior of resting-state connectivity across the course of a single scan, performing a time-frequency coherence analysis based on the wavelet transform. We focused on the connectivity of the posterior cingulate cortex (PCC), a primary node of the default-mode network, examining its relationship with both the "anticorrelated" ("task-positive") network as well as other nodes of the default-mode network. It was observed that coherence and phase between the PCC and the anticorrelated network was variable in time and frequency, and statistical testing based on Monte Carlo simulations revealed the presence of significant scale-dependent temporal variability. In addition, a sliding-window correlation procedure identified other regions across the brain that exhibited variable connectivity with the PCC across the scan, which included areas previously implicated in attention and salience processing. Although it is unclear whether the observed coherence and phase variability can be attributed to residual noise or modulation of cognitive state, the present results illustrate that resting-state functional connectivity is not static, and it may therefore prove valuable to consider measures of variability, in addition to average quantities, when characterizing resting-state networks.

摘要

大多数使用 fMRI 进行静息态功能连接研究的方法都假设时间稳定性,例如在扫描持续时间内计算的相关性和数据驱动的分解。然而,来自基于任务的 fMRI 研究和动物电生理学的证据表明,功能连接可能在秒到分钟的时间尺度内表现出动态变化。在本研究中,我们在单个扫描过程中研究了静息态连接的动态行为,通过基于小波变换的数据进行了时频相干性分析。我们专注于后扣带皮层(PCC)的连接,这是默认模式网络的主要节点,研究了它与“负相关”(“任务正相关”)网络以及默认模式网络的其他节点的关系。结果表明,PCC 与负相关网络之间的相干性和相位随时间和频率而变化,基于蒙特卡罗模拟的统计检验揭示了存在显著的依赖于尺度的时间变异性。此外,滑动窗口相关程序确定了大脑中其他区域,这些区域在扫描过程中与 PCC 表现出可变的连接,其中包括先前涉及注意力和突显处理的区域。尽管尚不清楚观察到的相干性和相位变化是否可以归因于残余噪声或认知状态的调制,但目前的结果表明静息态功能连接不是静态的,因此在描述静息态网络时,除了平均数量外,考虑变异性度量可能会很有价值。

相似文献

1
Time-frequency dynamics of resting-state brain connectivity measured with fMRI.
Neuroimage. 2010 Mar;50(1):81-98. doi: 10.1016/j.neuroimage.2009.12.011. Epub 2009 Dec 16.
2
Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: A multicentric resting-state fMRI study.
Neuroimage. 2016 Jan 1;124(Pt A):442-454. doi: 10.1016/j.neuroimage.2015.07.010. Epub 2015 Jul 9.
4
Principal components of functional connectivity: a new approach to study dynamic brain connectivity during rest.
Neuroimage. 2013 Dec;83:937-50. doi: 10.1016/j.neuroimage.2013.07.019. Epub 2013 Jul 18.
5
A Wavelet-Based Approach for Estimating Time-Varying Connectivity in Resting-State Functional Magnetic Resonance Imaging.
Brain Connect. 2022 Apr;12(3):285-298. doi: 10.1089/brain.2021.0015. Epub 2021 Aug 23.
6
Resting state networks in empirical and simulated dynamic functional connectivity.
Neuroimage. 2017 Oct 1;159:388-402. doi: 10.1016/j.neuroimage.2017.07.065. Epub 2017 Aug 3.
8
Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease.
Behav Brain Res. 2009 Jan 30;197(1):103-8. doi: 10.1016/j.bbr.2008.08.012. Epub 2008 Aug 22.

引用本文的文献

2
Brain network dynamics associated with intentional weight loss in older adults.
Apert Neuro. 2025;5. doi: 10.52294/001c.128461. Epub 2025 Feb 10.
3
A robust approach for analyzing and mapping hierarchical brain connectome towards laminar-specific neural networks.
Imaging Neurosci (Camb). 2025 Apr 22;3. doi: 10.1162/imag_a_00543. eCollection 2025.
4
Identifying dynamic reproducible brain states using a predictive modelling approach.
Imaging Neurosci (Camb). 2025 Apr 17;3. doi: 10.1162/imag_a_00540. eCollection 2025.
5
Consistency of resting-state correlations between fMRI networks and EEG band power.
Imaging Neurosci (Camb). 2025 Jun 18;3. doi: 10.1162/IMAG.a.37. eCollection 2025.
6
Temporal variability of brain-behavior relationships in fine-scale dynamics of edge time series.
Imaging Neurosci (Camb). 2025 Jan 23;3. doi: 10.1162/imag_a_00443. eCollection 2025.
8
Unveiling hidden sources of dynamic functional connectome through a novel regularized blind source separation approach.
Imaging Neurosci (Camb). 2024 Jul 12;2. doi: 10.1162/imag_a_00220. eCollection 2024.
9
Time-varying functional connectivity as Wishart processes.
Imaging Neurosci (Camb). 2024 Jun 5;2. doi: 10.1162/imag_a_00184. eCollection 2024.
10
Challenges in the measurement and interpretation of dynamic functional connectivity.
Imaging Neurosci (Camb). 2024 Nov 19;2. doi: 10.1162/imag_a_00366. eCollection 2024.

本文引用的文献

1
Endogenous human brain dynamics recover slowly following cognitive effort.
PLoS One. 2009 Aug 14;4(8):e6626. doi: 10.1371/journal.pone.0006626.
2
Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal.
Front Neuroinform. 2009 Jul 15;3:18. doi: 10.3389/neuro.11.018.2009. eCollection 2009.
3
Functional connectivity and alterations in baseline brain state in humans.
Neuroimage. 2010 Jan 1;49(1):823-34. doi: 10.1016/j.neuroimage.2009.07.028. Epub 2009 Jul 22.
4
Spatiotemporal dynamics of low frequency fluctuations in BOLD fMRI of the rat.
J Magn Reson Imaging. 2009 Aug;30(2):384-93. doi: 10.1002/jmri.21848.
5
Development of large-scale functional brain networks in children.
PLoS Biol. 2009 Jul;7(7):e1000157. doi: 10.1371/journal.pbio.1000157. Epub 2009 Jul 21.
6
Stability Of Default-Mode Network Activity In The Aging Brain.
Brain Imaging Behav. 2009 Jan 14;3(2):123-131. doi: 10.1007/s11682-008-9054-z.
7
Decoupling of the brain's default mode network during deep sleep.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11376-81. doi: 10.1073/pnas.0901435106. Epub 2009 Jun 19.
8
Key role of coupling, delay, and noise in resting brain fluctuations.
Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10302-7. doi: 10.1073/pnas.0901831106. Epub 2009 Jun 3.
9
Effects of model-based physiological noise correction on default mode network anti-correlations and correlations.
Neuroimage. 2009 Oct 1;47(4):1448-59. doi: 10.1016/j.neuroimage.2009.05.012. Epub 2009 May 14.
10
The global signal and observed anticorrelated resting state brain networks.
J Neurophysiol. 2009 Jun;101(6):3270-83. doi: 10.1152/jn.90777.2008. Epub 2009 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验