Suppr超能文献

现代缺失数据分析简介。

An introduction to modern missing data analyses.

机构信息

Arizona State University, USA.

出版信息

J Sch Psychol. 2010 Feb;48(1):5-37. doi: 10.1016/j.jsp.2009.10.001.

Abstract

A great deal of recent methodological research has focused on two modern missing data analysis methods: maximum likelihood and multiple imputation. These approaches are advantageous to traditional techniques (e.g. deletion and mean imputation techniques) because they require less stringent assumptions and mitigate the pitfalls of traditional techniques. This article explains the theoretical underpinnings of missing data analyses, gives an overview of traditional missing data techniques, and provides accessible descriptions of maximum likelihood and multiple imputation. In particular, this article focuses on maximum likelihood estimation and presents two analysis examples from the Longitudinal Study of American Youth data. One of these examples includes a description of the use of auxiliary variables. Finally, the paper illustrates ways that researchers can use intentional, or planned, missing data to enhance their research designs.

摘要

近年来,大量的方法学研究集中在两种现代缺失数据分析方法上:最大似然法和多重插补法。这些方法相对于传统技术(例如删除和均值插补技术)具有优势,因为它们需要的假设条件更少,并且可以减轻传统技术的缺陷。本文解释了缺失数据分析的理论基础,概述了传统缺失数据技术,并对最大似然法和多重插补法进行了通俗易懂的描述。特别是,本文重点介绍了最大似然估计,并通过美国青年纵向研究的数据呈现了两个分析实例。其中一个实例包括对辅助变量使用的描述。最后,本文说明了研究人员如何使用故意或计划缺失数据来增强他们的研究设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验