Suppr超能文献

一个有关尾巴的故事:唾液酸酶是噬菌体治疗 K1 荚膜大肠杆菌模型中成功的关键。

A tale of tails: Sialidase is key to success in a model of phage therapy against K1-capsulated Escherichia coli.

机构信息

Section of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA.

出版信息

Virology. 2010 Mar 1;398(1):79-86. doi: 10.1016/j.virol.2009.11.040. Epub 2009 Dec 16.

Abstract

Prior studies treating mice infected with Escherichia coli O18:K1:H7 observed that phages requiring the K1 capsule for infection (K1-dep) were superior to capsule-independent (K1-ind) phages. We show that three K1-ind phages all have low fitness when grown on cells in serum whereas fitnesses of four K1-dep phages were high. The difference is serum-specific, as fitnesses in broth overlapped. Sialidase activity was associated with all K1-dep virions tested but no K1-ind virions, a phenotype supported by sequence analyses. Adding endosialidase to cells infected with K1-ind phage increased fitness in serum by enhancing productive infection after adsorption. We propose that virion sialidase activity is the primary determinant of high fitness on cells grown in serum, and thus in a mammalian host. Although the benefit of sialidase is specific to K1-capsulated bacteria, this study may provide a scientific rationale for selecting phages for therapeutic use in many systemic infections.

摘要

先前研究感染大肠杆菌 O18:K1:H7 的小鼠时发现,需要 K1 荚膜才能感染的噬菌体(K1 依赖型噬菌体)比不依赖荚膜的噬菌体(K1 独立型噬菌体)更优越。我们发现,当在含血清的细胞中生长时,三种 K1 独立型噬菌体的适应性都较低,而四种 K1 依赖型噬菌体的适应性都较高。这种差异是血清特异性的,因为在肉汤中的适应性重叠。唾液酸酶活性与所有测试的 K1 依赖型病毒粒子都有关,但与 K1 独立型病毒粒子无关,这一表型得到了序列分析的支持。向感染 K1 独立型噬菌体的细胞中添加内切唾液酸酶,通过增强吸附后的有效感染,提高了在血清中的适应性。我们提出,病毒粒子的唾液酸酶活性是在含血清的细胞中适应性高的主要决定因素,因此也是在哺乳动物宿主中适应性高的主要决定因素。尽管唾液酸酶的益处是特定于 K1 荚膜细菌的,但这项研究可能为选择噬菌体用于治疗许多全身性感染提供了科学依据。

相似文献

1
A tale of tails: Sialidase is key to success in a model of phage therapy against K1-capsulated Escherichia coli.
Virology. 2010 Mar 1;398(1):79-86. doi: 10.1016/j.virol.2009.11.040. Epub 2009 Dec 16.
2
In vivo growth rates are poorly correlated with phage therapy success in a mouse infection model.
Antimicrob Agents Chemother. 2012 Feb;56(2):949-54. doi: 10.1128/AAC.05842-11. Epub 2011 Nov 21.
3
Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages.
Mol Microbiol. 2006 Jun;60(5):1123-35. doi: 10.1111/j.1365-2958.2006.05173.x.
7
Escherichia coli K1's capsule is a barrier to bacteriophage T7.
Appl Environ Microbiol. 2005 Aug;71(8):4872-4. doi: 10.1128/AEM.71.8.4872-4874.2005.
8
Structure and biochemical characterization of bacteriophage phi92 endosialidase.
Virology. 2015 Mar;477:133-143. doi: 10.1016/j.virol.2014.11.002. Epub 2014 Dec 1.

引用本文的文献

1
A VersaTile Approach to Reprogram the Specificity of the R2-Type Tailocin Towards Different Serotypes of and .
Antibiotics (Basel). 2025 Jan 18;14(1):104. doi: 10.3390/antibiotics14010104.
7
The Antibacterial Effects of Cocktail and Single Forms of Lytic Phages Belonging to and Families from Sewage against and .
Biomed Res Int. 2022 Nov 25;2022:7833565. doi: 10.1155/2022/7833565. eCollection 2022.
10
Overcoming the growth-infectivity trade-off in a bacteriophage slows bacterial resistance evolution.
Evol Appl. 2021 Jun 19;14(8):2055-2063. doi: 10.1111/eva.13260. eCollection 2021 Aug.

本文引用的文献

1
In vivo replication of T4 and T7 bacteriophages in germ-free mice colonized with Escherichia coli.
Virology. 2009 Oct 10;393(1):16-23. doi: 10.1016/j.virol.2009.07.020. Epub 2009 Aug 21.
2
T4 phages against Escherichia coli diarrhea: potential and problems.
Virology. 2009 May 25;388(1):21-30. doi: 10.1016/j.virol.2009.03.009. Epub 2009 Apr 1.
4
Bacteriophage therapy--cooked goose or phoenix rising?
Curr Opin Biotechnol. 2008 Dec;19(6):608-12. doi: 10.1016/j.copbio.2008.09.001. Epub 2008 Nov 5.
6
Biosynthesis of the Escherichia coli K1 group 2 polysialic acid capsule occurs within a protected cytoplasmic compartment.
Mol Microbiol. 2008 Jun;68(5):1252-67. doi: 10.1111/j.1365-2958.2008.06231.x. Epub 2008 Apr 8.
7
Evolution of a new enzyme activity from the same motif fold.
Mol Microbiol. 2008 Jul;69(2):287-90. doi: 10.1111/j.1365-2958.2008.06241.x.
8
Predicting evolution from genomics: experimental evolution of bacteriophage T7.
Heredity (Edinb). 2008 May;100(5):453-63. doi: 10.1038/sj.hdy.6801087. Epub 2008 Jan 23.
9
Novel approaches to developing new antibiotics for bacterial infections.
Br J Pharmacol. 2007 Dec;152(8):1147-54. doi: 10.1038/sj.bjp.0707432. Epub 2007 Aug 20.
10
Testing optimality with experimental evolution: lysis time in a bacteriophage.
Evolution. 2007 Jul;61(7):1695-709. doi: 10.1111/j.1558-5646.2007.00132.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验