Suppr超能文献

在小鼠感染模型中,噬菌体治疗的成功率与噬菌体的体内生长速率相关性较差。

In vivo growth rates are poorly correlated with phage therapy success in a mouse infection model.

机构信息

Section of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA.

出版信息

Antimicrob Agents Chemother. 2012 Feb;56(2):949-54. doi: 10.1128/AAC.05842-11. Epub 2011 Nov 21.

Abstract

Two classes of phages yield profoundly different levels of recovery in mice experimentally infected with an Escherichia coli O18:K1:H7 strain. Phages requiring the K1 capsule for infection (K1-dep) rescue virtually all infected mice, whereas phages not requiring the capsule (K1-ind) rescue modest numbers (∼30%). To rescue infected mice, K1-ind phages require at least a 10(6)-fold-higher inoculum than K1-dep phages. Yet their in vivo growth dynamics are only modestly inferior to those of K1-dep phages, and competition between the two phage types in the same mouse reveals only a slight growth advantage for the K1-dep phage. The in vivo growth rate seems unlikely to be the primary determinant of phage therapy success. An alternative explanation is that the success of K1-dep phages is due substantially to their proteomic composition. They encode an enzyme that degrades the K1 capsule, which has been shown in other work to be sufficient to cure infection in the complete absence of phages.

摘要

两类噬菌体在实验感染大肠杆菌 O18:K1:H7 菌株的小鼠中产生了截然不同的回收率。需要 K1 荚膜才能感染的噬菌体(K1-依赖型)几乎可以拯救所有受感染的小鼠,而不需要荚膜的噬菌体(K1-非依赖型)只能适度拯救(约 30%)。为了拯救感染的小鼠,K1-非依赖型噬菌体需要比 K1-依赖型噬菌体高至少 106 倍的接种量。然而,它们在体内的生长动态仅略逊于 K1-依赖型噬菌体,而且在同一小鼠中两种噬菌体类型之间的竞争只显示出 K1-依赖型噬菌体的轻微生长优势。在体内的生长速度似乎不太可能是噬菌体治疗成功的主要决定因素。另一种解释是,K1-依赖型噬菌体的成功主要归因于它们的蛋白质组组成。它们编码一种能够降解 K1 荚膜的酶,在其他研究中已经表明,在没有噬菌体的完全情况下,这种酶足以治愈感染。

相似文献

1
In vivo growth rates are poorly correlated with phage therapy success in a mouse infection model.
Antimicrob Agents Chemother. 2012 Feb;56(2):949-54. doi: 10.1128/AAC.05842-11. Epub 2011 Nov 21.
2
A tale of tails: Sialidase is key to success in a model of phage therapy against K1-capsulated Escherichia coli.
Virology. 2010 Mar 1;398(1):79-86. doi: 10.1016/j.virol.2009.11.040. Epub 2009 Dec 16.
3
Dynamics of success and failure in phage and antibiotic therapy in experimental infections.
BMC Microbiol. 2002 Nov 26;2:35. doi: 10.1186/1471-2180-2-35.
5
Escherichia coli K1's capsule is a barrier to bacteriophage T7.
Appl Environ Microbiol. 2005 Aug;71(8):4872-4. doi: 10.1128/AEM.71.8.4872-4874.2005.
10
Evolution of bacteriophages infecting encapsulated bacteria: lessons from Escherichia coli K1-specific phages.
Mol Microbiol. 2006 Jun;60(5):1123-35. doi: 10.1111/j.1365-2958.2006.05173.x.

引用本文的文献

1
Automating Predictive Phage Therapy Pharmacology.
Antibiotics (Basel). 2023 Sep 8;12(9):1423. doi: 10.3390/antibiotics12091423.
2
Therapeutic Bacteriophages for Gram-Negative Bacterial Infections in Animals and Humans.
Pathog Immun. 2022 Oct 17;7(2):1-45. doi: 10.20411/pai.v7i2.516. eCollection 2022.
3
Phage Cocktail Targeting STEC O157:H7 Has Comparable Efficacy and Superior Recovery Compared with Enrofloxacin in an Enteric Murine Model.
Microbiol Spectr. 2022 Jun 29;10(3):e0023222. doi: 10.1128/spectrum.00232-22. Epub 2022 May 10.
5
Differential Bacteriophage Efficacy in Controlling in Cattle Hide and Soil Models.
Front Microbiol. 2021 Jun 28;12:657524. doi: 10.3389/fmicb.2021.657524. eCollection 2021.
6
Advances in Bacteriophage Therapy against Relevant MultiDrug-Resistant Pathogens.
Antibiotics (Basel). 2021 Jun 4;10(6):672. doi: 10.3390/antibiotics10060672.
7
Promises and Pitfalls of In Vivo Evolution to Improve Phage Therapy.
Viruses. 2019 Nov 21;11(12):1083. doi: 10.3390/v11121083.
8
Biological challenges of phage therapy and proposed solutions: a literature review.
Expert Rev Anti Infect Ther. 2019 Dec;17(12):1011-1041. doi: 10.1080/14787210.2019.1694905. Epub 2019 Dec 2.
9
Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth.
Pharmaceuticals (Basel). 2019 Mar 11;12(1):35. doi: 10.3390/ph12010035.
10

本文引用的文献

1
The phage therapy paradigm: prêt-à-porter or sur-mesure?
Pharm Res. 2011 Apr;28(4):934-7. doi: 10.1007/s11095-010-0313-5. Epub 2010 Nov 10.
2
A tale of tails: Sialidase is key to success in a model of phage therapy against K1-capsulated Escherichia coli.
Virology. 2010 Mar 1;398(1):79-86. doi: 10.1016/j.virol.2009.11.040. Epub 2009 Dec 16.
4
Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial.
J Wound Care. 2009 Jun;18(6):237-8, 240-3. doi: 10.12968/jowc.2009.18.6.42801.
5
Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials.
PLoS One. 2009;4(3):e4944. doi: 10.1371/journal.pone.0004944. Epub 2009 Mar 20.
6
Bacteriophage therapy--cooked goose or phoenix rising?
Curr Opin Biotechnol. 2008 Dec;19(6):608-12. doi: 10.1016/j.copbio.2008.09.001. Epub 2008 Nov 5.
7
Novel approaches to developing new antibiotics for bacterial infections.
Br J Pharmacol. 2007 Dec;152(8):1147-54. doi: 10.1038/sj.bjp.0707432. Epub 2007 Aug 20.
8
Bacteriophages: an appraisal of their role in the treatment of bacterial infections.
Int J Antimicrob Agents. 2007 Aug;30(2):118-28. doi: 10.1016/j.ijantimicag.2007.04.006. Epub 2007 Jun 12.
9
Pharmacodynamics of non-replicating viruses, bacteriocins and lysins.
Proc Biol Sci. 2006 Nov 7;273(1602):2703-12. doi: 10.1098/rspb.2006.3640.
10
Optimality models of phage life history and parallels in disease evolution.
J Theor Biol. 2006 Aug 21;241(4):928-38. doi: 10.1016/j.jtbi.2006.01.027. Epub 2006 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验