Suppr超能文献

骨髓源性血管生成细胞可恢复新生鼠高氧后肺肺泡和血管的结构。

Bone marrow-derived angiogenic cells restore lung alveolar and vascular structure after neonatal hyperoxia in infant mice.

机构信息

Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado-Denver, 12800 E. 19th Ave., Aurora, CO 80045, USA.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2010 Mar;298(3):L315-23. doi: 10.1152/ajplung.00089.2009. Epub 2009 Dec 11.

Abstract

Neonatal hyperoxia impairs vascular and alveolar growth in mice and decreases endothelial progenitor cells. To determine the role of bone marrow-derived cells in restoration of neonatal lung structure after injury, we studied a novel bone marrow myeloid progenitor cell population from Tie2-green fluorescent protein (GFP) transgenic mice (bone marrow-derived angiogenic cells; BMDAC). We hypothesized that treatment with BMDAC would restore normal lung structure in infant mice during recovery from neonatal hyperoxia. Neonatal mice (1-day-old) were exposed to 80% oxygen for 10 days. BMDACs (1 x 10(5)), embryonic endothelial progenitor cells, mouse embryonic fibroblasts (control), or saline were then injected into the pulmonary circulation. At 21 days of age, saline-treated mice had enlarged alveoli, reduced septation, and a reduction in vascular density. In contrast, mice treated with BMDAC had complete restoration of lung structure that was indistinguishable from room air controls. BMDAC comprised 12% of distal lung cells localized to pulmonary vessels or alveolar type II (AT2) cells and persist (8.8%) for 8 wk postinjection. Coculture of AT2 cells or lung endothelial cells (luEC) with BMDAC augmented AT2 and luEC cell growth in vitro. We conclude that treatment with BMDAC after neonatal hyperoxia restores lung structure in this model of bronchopulmonary dysplasia.

摘要

新生鼠高氧血症可损害其血管和肺泡生长,并减少内皮祖细胞。为了确定骨髓源性细胞在损伤后新生儿肺结构修复中的作用,我们研究了来自 Tie2-绿色荧光蛋白(GFP)转基因小鼠的新型骨髓髓系祖细胞群体(骨髓源性血管生成细胞;BMDAC)。我们假设,在新生鼠高氧血症恢复过程中,BMDAC 治疗可恢复正常的肺结构。将新生鼠(1 日龄)暴露于 80%的氧气中 10 天。然后将 BMDAC(1 x 10(5))、胚胎内皮祖细胞、小鼠胚胎成纤维细胞(对照)或生理盐水注入肺循环。在 21 天时,生理盐水处理的小鼠的肺泡增大,间隔减少,血管密度降低。相比之下,用 BMDAC 治疗的小鼠的肺结构完全恢复,与空气对照没有区别。BMDAC 占远端肺细胞的 12%,定位于肺血管或 II 型肺泡(AT2)细胞,注射后持续存在 8 周(8.8%)。AT2 细胞或肺内皮细胞(luEC)与 BMDAC 的共培养增强了 AT2 和 luEC 细胞的体外生长。我们得出结论,在这种支气管肺发育不良模型中,新生鼠高氧血症后 BMDAC 的治疗可恢复肺结构。

相似文献

1
Bone marrow-derived angiogenic cells restore lung alveolar and vascular structure after neonatal hyperoxia in infant mice.
Am J Physiol Lung Cell Mol Physiol. 2010 Mar;298(3):L315-23. doi: 10.1152/ajplung.00089.2009. Epub 2009 Dec 11.
3
Bone marrow-derived c-kit+ cells attenuate neonatal hyperoxia-induced lung injury.
Cell Transplant. 2015;24(1):85-95. doi: 10.3727/096368913X667736. Epub 2013 May 22.
4
The Effect of Gender on Mesenchymal Stem Cell (MSC) Efficacy in Neonatal Hyperoxia-Induced Lung Injury.
PLoS One. 2016 Oct 6;11(10):e0164269. doi: 10.1371/journal.pone.0164269. eCollection 2016.
6
Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia.
Am J Physiol Lung Cell Mol Physiol. 2006 Nov;291(5):L1068-78. doi: 10.1152/ajplung.00093.2006. Epub 2006 Jul 7.
8
Endothelial colony-forming cell conditioned media promote angiogenesis in vitro and prevent pulmonary hypertension in experimental bronchopulmonary dysplasia.
Am J Physiol Lung Cell Mol Physiol. 2013 Jul 1;305(1):L73-81. doi: 10.1152/ajplung.00400.2012. Epub 2013 May 10.
9
Cumulative effects of neonatal hyperoxia on murine alveolar structure and function.
Pediatr Pulmonol. 2017 May;52(5):616-624. doi: 10.1002/ppul.23654. Epub 2017 Feb 10.
10
Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats.
Am J Physiol Lung Cell Mol Physiol. 2005 Oct;289(4):L529-35. doi: 10.1152/ajplung.00336.2004. Epub 2005 May 20.

引用本文的文献

1
Extracellular vesicle-mediated cellular crosstalk in lung repair, remodelling and regeneration.
Eur Respir Rev. 2022 Jan 25;31(163). doi: 10.1183/16000617.0106-2021. Print 2022 Mar 31.
2
Application Prospects of Mesenchymal Stem Cell Therapy for Bronchopulmonary Dysplasia and the Challenges Encountered.
Biomed Res Int. 2021 May 3;2021:9983664. doi: 10.1155/2021/9983664. eCollection 2021.
4
Emerging antenatal therapies for congenital diaphragmatic hernia-induced pulmonary hypertension in preclinical models.
Pediatr Res. 2021 May;89(7):1641-1649. doi: 10.1038/s41390-020-01191-x. Epub 2020 Oct 10.
5
Present and Future of Bronchopulmonary Dysplasia.
J Clin Med. 2020 May 20;9(5):1539. doi: 10.3390/jcm9051539.
7
The Potentials and Caveats of Mesenchymal Stromal Cell-Based Therapies in the Preterm Infant.
Stem Cells Int. 2018 Apr 8;2018:9652897. doi: 10.1155/2018/9652897. eCollection 2018.
8
Fresh Noncultured Endothelial Progenitor Cells Improve Neonatal Lung Hyperoxia-Induced Alveolar Injury.
Stem Cells Transl Med. 2017 Dec;6(12):2094-2105. doi: 10.1002/sctm.17-0093. Epub 2017 Oct 13.
9
Stem cell biology and regenerative medicine for neonatal lung diseases.
Pediatr Res. 2018 Jan;83(1-2):291-297. doi: 10.1038/pr.2017.232. Epub 2017 Oct 18.

本文引用的文献

1
The roles of mesenchymal stem cells (MSCs) therapy in ischemic heart diseases.
Biochem Biophys Res Commun. 2007 Jul 27;359(2):189-93. doi: 10.1016/j.bbrc.2007.05.112. Epub 2007 May 25.
2
Adult mesenchymal stem cells: differentiation potential and therapeutic applications.
J Postgrad Med. 2007 Apr-Jun;53(2):121-7. doi: 10.4103/0022-3859.32215.
4
Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer.
Blood. 2007 Jun 15;109(12):5276-85. doi: 10.1182/blood-2006-10-053504. Epub 2007 Feb 27.
6
Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals.
Blood. 2007 Mar 1;109(5):1801-9. doi: 10.1182/blood-2006-08-043471. Epub 2006 Oct 19.
7
Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion.
Immunobiology. 2006;211(6-8):487-501. doi: 10.1016/j.imbio.2006.06.002. Epub 2006 Jul 21.
8
Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia.
Am J Physiol Lung Cell Mol Physiol. 2006 Nov;291(5):L1068-78. doi: 10.1152/ajplung.00093.2006. Epub 2006 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验