School of Software Engineering, South China University of Technology, Guangzhou, Guangdong, China.
Pazhou Lab, Guangzhou, Guangdong, China.
Br J Radiol. 2022 Jan 1;95(1129):20210819. doi: 10.1259/bjr.20210819. Epub 2021 Oct 18.
To develop a rapid and accurate 4D deformable image registration (DIR) approach for online adaptive radiotherapy.
We propose a deep learning (DL)-based few-shot registration network (FR-Net) to generate deformation vector fields from each respiratory phase to an implicit reference image, thereby mitigating the bias introduced by the selection of reference images. The proposed FR-Net is pretrained with limited unlabeled 4D data and further optimized by maximizing the intensity similarity of one specific four-dimensional computed tomography (4DCT) scan. Because of the learning ability of DL models, the few-shot learning strategy facilitates the generalization of the model to other 4D data sets and the acceleration of the optimization process.
The proposed FR-Net is evaluated for 4D groupwise and 3D pairwise registration on thoracic 4DCT data sets DIR-Lab and POPI. FR-Net displays an averaged target registration error of 1.48 mm and 1.16 mm between the maximum inhalation and exhalation phases in the 4DCT of DIR-Lab and POPI, respectively, with approximately 2 min required to optimize one 4DCT. Overall, FR-Net outperforms state-of-the-art methods in terms of registration accuracy and exhibits a low computational time.
We develop a few-shot groupwise DIR algorithm for 4DCT images. The promising registration performance and computational efficiency demonstrate the prospective applications of this approach in registration tasks for online adaptive radiotherapy.
This work exploits DL models to solve the optimization problem in registering 4DCT scans while combining groupwise registration and few-shot learning strategy to solve the problem of consuming computational time and inferior registration accuracy.
开发一种用于在线自适应放疗的快速准确的四维形变图像配准(DIR)方法。
我们提出了一种基于深度学习(DL)的少样本配准网络(FR-Net),从每个呼吸相位生成变形向量场到一个隐含参考图像,从而减轻了参考图像选择带来的偏差。所提出的 FR-Net 是使用有限的未标记的 4D 数据进行预训练的,并通过最大化特定的四维计算机断层扫描(4DCT)扫描的强度相似性来进一步优化。由于 DL 模型的学习能力,少样本学习策略有助于模型对其他 4D 数据集的泛化和优化过程的加速。
我们在胸部 4DCT 数据集 DIR-Lab 和 POPI 上对 4D 组和 3D 对配准进行了评估。FR-Net 在 DIR-Lab 和 POPI 的 4DCT 中分别在最大吸气和呼气相位之间显示出平均目标配准误差为 1.48mm 和 1.16mm,优化一个 4DCT 大约需要 2 分钟。总的来说,FR-Net 在配准精度方面优于最先进的方法,并且具有较低的计算时间。
我们开发了一种用于 4DCT 图像的少样本组配准 DIR 算法。有希望的配准性能和计算效率证明了该方法在在线自适应放疗的配准任务中的应用前景。
这项工作利用 DL 模型来解决在注册 4DCT 扫描时的优化问题,同时结合组配准和少样本学习策略来解决消耗计算时间和较差的配准精度的问题。