Suppr超能文献

基于 4DCT 图像的少样本学习的可变形图像配准。

Few-shot learning for deformable image registration in 4DCT images.

机构信息

School of Software Engineering, South China University of Technology, Guangzhou, Guangdong, China.

Pazhou Lab, Guangzhou, Guangdong, China.

出版信息

Br J Radiol. 2022 Jan 1;95(1129):20210819. doi: 10.1259/bjr.20210819. Epub 2021 Oct 18.

Abstract

OBJECTIVES

To develop a rapid and accurate 4D deformable image registration (DIR) approach for online adaptive radiotherapy.

METHODS

We propose a deep learning (DL)-based few-shot registration network (FR-Net) to generate deformation vector fields from each respiratory phase to an implicit reference image, thereby mitigating the bias introduced by the selection of reference images. The proposed FR-Net is pretrained with limited unlabeled 4D data and further optimized by maximizing the intensity similarity of one specific four-dimensional computed tomography (4DCT) scan. Because of the learning ability of DL models, the few-shot learning strategy facilitates the generalization of the model to other 4D data sets and the acceleration of the optimization process.

RESULTS

The proposed FR-Net is evaluated for 4D groupwise and 3D pairwise registration on thoracic 4DCT data sets DIR-Lab and POPI. FR-Net displays an averaged target registration error of 1.48 mm and 1.16 mm between the maximum inhalation and exhalation phases in the 4DCT of DIR-Lab and POPI, respectively, with approximately 2 min required to optimize one 4DCT. Overall, FR-Net outperforms state-of-the-art methods in terms of registration accuracy and exhibits a low computational time.

CONCLUSION

We develop a few-shot groupwise DIR algorithm for 4DCT images. The promising registration performance and computational efficiency demonstrate the prospective applications of this approach in registration tasks for online adaptive radiotherapy.

ADVANCES IN KNOWLEDGE

This work exploits DL models to solve the optimization problem in registering 4DCT scans while combining groupwise registration and few-shot learning strategy to solve the problem of consuming computational time and inferior registration accuracy.

摘要

目的

开发一种用于在线自适应放疗的快速准确的四维形变图像配准(DIR)方法。

方法

我们提出了一种基于深度学习(DL)的少样本配准网络(FR-Net),从每个呼吸相位生成变形向量场到一个隐含参考图像,从而减轻了参考图像选择带来的偏差。所提出的 FR-Net 是使用有限的未标记的 4D 数据进行预训练的,并通过最大化特定的四维计算机断层扫描(4DCT)扫描的强度相似性来进一步优化。由于 DL 模型的学习能力,少样本学习策略有助于模型对其他 4D 数据集的泛化和优化过程的加速。

结果

我们在胸部 4DCT 数据集 DIR-Lab 和 POPI 上对 4D 组和 3D 对配准进行了评估。FR-Net 在 DIR-Lab 和 POPI 的 4DCT 中分别在最大吸气和呼气相位之间显示出平均目标配准误差为 1.48mm 和 1.16mm,优化一个 4DCT 大约需要 2 分钟。总的来说,FR-Net 在配准精度方面优于最先进的方法,并且具有较低的计算时间。

结论

我们开发了一种用于 4DCT 图像的少样本组配准 DIR 算法。有希望的配准性能和计算效率证明了该方法在在线自适应放疗的配准任务中的应用前景。

知识进展

这项工作利用 DL 模型来解决在注册 4DCT 扫描时的优化问题,同时结合组配准和少样本学习策略来解决消耗计算时间和较差的配准精度的问题。

相似文献

1
Few-shot learning for deformable image registration in 4DCT images.
Br J Radiol. 2022 Jan 1;95(1129):20210819. doi: 10.1259/bjr.20210819. Epub 2021 Oct 18.
2
Lung-CRNet: A convolutional recurrent neural network for lung 4DCT image registration.
Med Phys. 2021 Dec;48(12):7900-7912. doi: 10.1002/mp.15324. Epub 2021 Nov 17.
3
Deformable lung 4DCT image registration via landmark-driven cycle network.
Med Phys. 2024 Mar;51(3):1974-1984. doi: 10.1002/mp.16738. Epub 2023 Sep 14.
4
Quadratic penalty method for intensity-based deformable image registration and 4DCT lung motion recovery.
Med Phys. 2019 May;46(5):2194-2203. doi: 10.1002/mp.13457. Epub 2019 Mar 14.
5
A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view.
Phys Med Biol. 2012 Nov 21;57(22):7579-98. doi: 10.1088/0031-9155/57/22/7579. Epub 2012 Oct 26.
6
Use of lung treatment plans to evaluate DIR algorithms.
Australas Phys Eng Sci Med. 2018 Dec;41(4):837-845. doi: 10.1007/s13246-018-0677-0. Epub 2018 Aug 24.
7
Synthetic 4DCT(MRI) lung phantom generation for 4D radiotherapy and image guidance investigations.
Med Phys. 2022 May;49(5):2890-2903. doi: 10.1002/mp.15591. Epub 2022 Mar 17.
8
ORRN: An ODE-Based Recursive Registration Network for Deformable Respiratory Motion Estimation With Lung 4DCT Images.
IEEE Trans Biomed Eng. 2023 Dec;70(12):3265-3276. doi: 10.1109/TBME.2023.3280463. Epub 2023 Nov 21.
9
Three-dimensional versus four-dimensional dose calculation for volumetric modulated arc therapy of hypofractionated treatments.
Z Med Phys. 2016 Mar;26(1):45-53. doi: 10.1016/j.zemedi.2015.06.010. Epub 2015 Jul 14.

引用本文的文献

本文引用的文献

1
GroupRegNet: a groupwise one-shot deep learning-based 4D image registration method.
Phys Med Biol. 2021 Feb 12;66(4):045030. doi: 10.1088/1361-6560/abd956.
2
One-Shot Learning for Deformable Medical Image Registration and Periodic Motion Tracking.
IEEE Trans Med Imaging. 2020 Jul;39(7):2506-2517. doi: 10.1109/TMI.2020.2972616. Epub 2020 Feb 10.
3
LungRegNet: An unsupervised deformable image registration method for 4D-CT lung.
Med Phys. 2020 Apr;47(4):1763-1774. doi: 10.1002/mp.14065. Epub 2020 Feb 26.
4
Applications and limitations of machine learning in radiation oncology.
Br J Radiol. 2019 Aug;92(1100):20190001. doi: 10.1259/bjr.20190001. Epub 2019 Jun 5.
5
VoxelMorph: A Learning Framework for Deformable Medical Image Registration.
IEEE Trans Med Imaging. 2019 Feb 4. doi: 10.1109/TMI.2019.2897538.
6
Evaluation of Elekta 4D cone beam CT-based automatic image registration for radiation treatment of lung cancer.
Br J Radiol. 2015 Sep;88(1053):20140620. doi: 10.1259/bjr.20140620. Epub 2015 Jul 17.
7
Four-dimensional computed tomography (4DCT): A review of the current status and applications.
J Med Imaging Radiat Oncol. 2015 Oct;59(5):545-54. doi: 10.1111/1754-9485.12326. Epub 2015 Jun 3.
9
Spatiotemporal motion estimation for respiratory-correlated imaging of the lungs.
Med Phys. 2011 Jan;38(1):166-78. doi: 10.1118/1.3523619.
10
Nonrigid registration of dynamic medical imaging data using nD + t B-splines and a groupwise optimization approach.
Med Image Anal. 2011 Apr;15(2):238-49. doi: 10.1016/j.media.2010.10.003. Epub 2010 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验