Suppr超能文献

基于深度学习的肝脏边界运动估计和生物力学建模(DL-Bio)的自动肝脏肿瘤定位。

Automatic liver tumor localization using deep learning-based liver boundary motion estimation and biomechanical modeling (DL-Bio).

机构信息

Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.

出版信息

Med Phys. 2021 Dec;48(12):7790-7805. doi: 10.1002/mp.15275. Epub 2021 Nov 19.

Abstract

PURPOSE

Recently, two-dimensional-to-three-dimensional (2D-3D) deformable registration has been applied to deform liver tumor contours from prior reference images onto estimated cone-beam computed tomography (CBCT) target images to automate on-board tumor localizations. Biomechanical modeling has also been introduced to fine-tune the intra-liver deformation-vector-fields (DVFs) solved by 2D-3D deformable registration, especially at low-contrast regions, using tissue elasticity information and liver boundary DVFs. However, the caudal liver boundary shows low contrast from surrounding tissues in the cone-beam projections, which degrades the accuracy of the intensity-based 2D-3D deformable registration there and results in less accurate boundary conditions for biomechanical modeling. We developed a deep-learning (DL)-based method to optimize the liver boundary DVFs after 2D-3D deformable registration to further improve the accuracy of subsequent biomechanical modeling and liver tumor localization.

METHODS

The DL-based network was built based on the U-Net architecture. The network was trained in a supervised fashion to learn motion correlation between cranial and caudal liver boundaries to optimize the liver boundary DVFs. Inputs of the network had three channels, and each channel featured the 3D DVFs estimated by the 2D-3D deformable registration along one Cartesian direction (x, y, z). To incorporate patient-specific liver boundary information into the DVFs, the DVFs were masked by a liver boundary ring structure generated from the liver contour of the prior reference image. The network outputs were the optimized DVFs along the liver boundary with higher accuracy. From these optimized DVFs, boundary conditions were extracted for biomechanical modeling to further optimize the solution of intra-liver tumor motion. We evaluated the method using 34 liver cancer patient cases, with 24 for training and 10 for testing. We evaluated and compared the performance of three methods: 2D-3D deformable registration, 2D-3D-Bio (2D-3D deformable registration with biomechanical modeling), and DL-Bio (DL model prediction with biomechanical modeling). The tumor localization errors were quantified through calculating the center-of-mass-errors (COMEs), DICE coefficients, and Hausdorff distance between deformed liver tumor contours and manually segmented "gold-standard" contours.

RESULTS

The predicted DVFs by the DL model showed improved accuracy at the liver boundary, which translated into more accurate liver tumor localizations through biomechanical modeling. On a total of 90 evaluated images and tumor contours, the average (± sd) liver tumor COMEs of the 2D-3D, 2D-3D-Bio, and DL-Bio techniques were 4.7 ± 1.9 mm, 2.9 ± 1.0 mm, and 1.7 ± 0.4 mm. The corresponding average (± sd) DICE coefficients were 0.60 ± 0.12, 0.71 ± 0.07, and 0.78 ± 0.03; and the average (± sd) Hausdorff distances were 7.0 ± 2.6 mm, 5.4 ± 1.5 mm, and 4.5 ± 1.3 mm, respectively.

CONCLUSION

DL-Bio solves a general correlation model to improve the accuracy of the DVFs at the liver boundary. With improved boundary conditions, the accuracy of biomechanical modeling can be further increased for accurate intra-liver low-contrast tumor localization.

摘要

目的

最近,二维到三维(2D-3D)变形配准已被应用于将先前参考图像中的肝肿瘤轮廓变形到估计的锥形束计算机断层扫描(CBCT)目标图像上,以实现机载肿瘤定位的自动化。生物力学建模也被引入,以利用组织弹性信息和肝边界变形向量场(DVF)来微调由 2D-3D 变形配准解决的肝内变形向量场(DVF),特别是在低对比度区域。然而,在锥形束投影中,尾侧肝边界与周围组织对比度较低,这会降低基于强度的 2D-3D 变形配准的准确性,并导致生物力学建模的边界条件不太准确。我们开发了一种基于深度学习(DL)的方法,通过 2D-3D 变形配准后优化肝边界 DVF,进一步提高后续生物力学建模和肝肿瘤定位的准确性。

方法

基于 U-Net 架构构建了基于 DL 的网络。该网络以监督方式进行训练,以学习肝头侧和尾侧边界之间的运动相关性,从而优化肝边界 DVF。网络的输入有三个通道,每个通道都具有通过 2D-3D 变形配准沿一个笛卡尔方向(x、y、z)估计的 3D DVF。为了将患者特定的肝边界信息纳入 DVF,将 DVF 掩蔽在由先前参考图像的肝轮廓生成的肝边界环结构中。网络输出是具有更高精度的沿肝边界的优化 DVF。从这些优化的 DVF 中,可以提取生物力学建模的边界条件,以进一步优化肝内肿瘤运动的解。我们使用 34 例肝癌患者病例进行了方法评估,其中 24 例用于训练,10 例用于测试。我们评估和比较了三种方法的性能:2D-3D 变形配准、2D-3D-Bio(具有生物力学建模的 2D-3D 变形配准)和 DL-Bio(具有生物力学建模的 DL 模型预测)。通过计算质量中心误差(COMEs)、DICE 系数和变形肝肿瘤轮廓与手动分割的“金标准”轮廓之间的 Hausdorff 距离来量化肿瘤定位误差。

结果

DL 模型预测的 DVF 在肝边界处显示出更高的准确性,这通过生物力学建模转化为更准确的肝肿瘤定位。在总共 90 个评估的图像和肿瘤轮廓中,2D-3D、2D-3D-Bio 和 DL-Bio 技术的平均(±标准差)肝肿瘤 COME 分别为 4.7±1.9mm、2.9±1.0mm 和 1.7±0.4mm。相应的平均(±标准差)DICE 系数分别为 0.60±0.12、0.71±0.07 和 0.78±0.03;平均(±标准差)Hausdorff 距离分别为 7.0±2.6mm、5.4±1.5mm 和 4.5±1.3mm。

结论

DL-Bio 解决了一个通用的相关模型,以提高肝边界处的 DVF 准确性。通过改进边界条件,可以进一步提高生物力学建模的准确性,从而实现肝内低对比度肿瘤的精确定位。

相似文献

引用本文的文献

本文引用的文献

4
Image-guided Radiotherapy to Manage Respiratory Motion: Lung and Liver.图像引导放射治疗管理呼吸运动:肺和肝。
Clin Oncol (R Coll Radiol). 2020 Dec;32(12):792-804. doi: 10.1016/j.clon.2020.09.008. Epub 2020 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验