Suppr超能文献

CMEIAS 颜色分割:一种改进的计算技术,用于以单细胞分辨率处理定量微生物生态学研究中的彩色图像。

CMEIAS color segmentation: an improved computing technology to process color images for quantitative microbial ecology studies at single-cell resolution.

机构信息

Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.

出版信息

Microb Ecol. 2010 Feb;59(2):400-14. doi: 10.1007/s00248-009-9616-7. Epub 2009 Dec 19.

Abstract

Quantitative microscopy and digital image analysis are underutilized in microbial ecology largely because of the laborious task to segment foreground object pixels from background, especially in complex color micrographs of environmental samples. In this paper, we describe an improved computing technology developed to alleviate this limitation. The system's uniqueness is its ability to edit digital images accurately when presented with the difficult yet commonplace challenge of removing background pixels whose three-dimensional color space overlaps the range that defines foreground objects. Image segmentation is accomplished by utilizing algorithms that address color and spatial relationships of user-selected foreground object pixels. Performance of the color segmentation algorithm evaluated on 26 complex micrographs at single pixel resolution had an overall pixel classification accuracy of 99+%. Several applications illustrate how this improved computing technology can successfully resolve numerous challenges of complex color segmentation in order to produce images from which quantitative information can be accurately extracted, thereby gain new perspectives on the in situ ecology of microorganisms. Examples include improvements in the quantitative analysis of (1) microbial abundance and phylotype diversity of single cells classified by their discriminating color within heterogeneous communities, (2) cell viability, (3) spatial relationships and intensity of bacterial gene expression involved in cellular communication between individual cells within rhizoplane biofilms, and (4) biofilm ecophysiology based on ribotype-differentiated radioactive substrate utilization. The stand-alone executable file plus user manual and tutorial images for this color segmentation computing application are freely available at http://cme.msu.edu/cmeias/ . This improved computing technology opens new opportunities of imaging applications where discriminating colors really matter most, thereby strengthening quantitative microscopy-based approaches to advance microbial ecology in situ at individual single-cell resolution.

摘要

定量显微镜和数字图像分析在微生物生态学中的应用还不够广泛,主要是因为从背景中分割前景对象像素的任务非常繁琐,尤其是在环境样本的复杂彩色显微图像中。在本文中,我们描述了一种改进的计算技术,旨在缓解这一限制。该系统的独特之处在于,当面临去除背景像素的困难而又常见的挑战时,它能够准确地编辑数字图像,这些背景像素的三维颜色空间与定义前景对象的范围重叠。图像分割是通过利用解决用户选择的前景对象像素的颜色和空间关系的算法来完成的。在单像素分辨率下对 26 张复杂显微图像进行的颜色分割算法性能评估中,总体像素分类准确率达到 99%以上。有几个应用实例说明了这种改进的计算技术如何成功地解决复杂颜色分割的众多挑战,从而生成可以准确提取定量信息的图像,从而为微生物的原位生态学提供新的视角。这些应用实例包括:(1)通过在异质群落中根据其有区别的颜色对单个细胞进行分类,来提高对微生物丰度和单型多样性的定量分析;(2)细胞活力;(3)根际生物膜中单个细胞之间细胞通讯涉及的细菌基因表达的空间关系和强度;(4)基于核糖体型区分放射性底物利用的生物膜生态生理学。这个用于颜色分割计算应用的独立可执行文件、用户手册和教程图像都可以在 http://cme.msu.edu/cmeias/ 上免费获取。这种改进的计算技术为成像应用开辟了新的机会,在这些应用中,有区别的颜色至关重要,从而加强了基于定量显微镜的方法,以在个体单细胞分辨率上推进原位微生物生态学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验