Suppr超能文献

动力学控制的光诱导电子转移开关在 Cu(I)-响应荧光探针中。

Kinetically controlled photoinduced electron transfer switching in Cu(I)-responsive fluorescent probes.

机构信息

School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA.

出版信息

J Am Chem Soc. 2010 Jan 20;132(2):737-47. doi: 10.1021/ja908326z.

Abstract

Copper(I)-responsive fluorescent probes based on photoinduced electron transfer (PET) switching consistently display incomplete recovery of emission upon Cu(I) binding compared to the corresponding isolated fluorophores, raising the question of whether Cu(I) might engage in adverse quenching pathways. To address this question, we performed detailed photophysical studies on a series of Cu(I)-responsive fluorescent probes that are based on a 16-membered thiazacrown receptor ([16]aneNS(3)) tethered to 1,3,5-triarylpyrazoline-fluorophores. The fluorescence enhancement upon Cu(I) binding, which is mainly governed by changes in the photoinduced electron transfer (PET) driving force between the ligand and fluorophore, was systematically optimized by increasing the electron withdrawing character of the 1-aryl-ring, yielding a maximum 29-fold fluorescence enhancement upon saturation with Cu(I) in methanol and a greater than 500-fold enhancement upon protonation with trifluoroacetic acid. Time-resolved fluorescence decay data for the Cu(I)-saturated probe indicated the presence of three distinct emissive species in methanol. Contrary to the notion that Cu(I) might engage in reductive electron transfer quenching, femtosecond time-resolved pump-probe experiments provided no evidence for formation of a transient Cu(II) species upon photoexcitation. Variable temperature (1)H NMR experiments revealed a dynamic equilibrium between the tetradentate NS(3)-coordinated Cu(I) complex and a ternary complex involving coordination of a solvent molecule, an observation that was further supported by quantum chemical calculations. The combined photophysical, electrochemical, and solution chemistry experiments demonstrate that electron transfer from Cu(I) does not compete with radiative deactivation of the excited fluorophore, and, hence, that the Cu(I)-induced fluorescence switching is kinetically controlled.

摘要

基于光诱导电子转移(PET)开关的铜(I)响应荧光探针与相应的孤立荧光团相比,在与 Cu(I)结合后发射的完全恢复不一致,这引发了一个问题,即 Cu(I)是否可能参与不利的猝灭途径。为了解决这个问题,我们对一系列基于 16 元噻唑冠受体([16]aneNS(3))与 1,3,5-三芳基吡唑啉荧光团连接的铜(I)响应荧光探针进行了详细的光物理研究。荧光增强主要由配体和荧光团之间的光诱导电子转移(PET)驱动力的变化控制,通过增加 1-芳基环的吸电子特性来系统优化,在甲醇中与 Cu(I)饱和时最大荧光增强 29 倍,用三氟乙酸质子化时增强大于 500 倍。Cu(I)饱和探针的时间分辨荧光衰减数据表明,在甲醇中有三种不同的发射物种存在。与 Cu(I)可能参与还原电子转移猝灭的概念相反,飞秒时间分辨泵浦探针实验没有提供在光激发时形成瞬态 Cu(II)物种的证据。变温(1)H NMR 实验表明,四配位 NS(3)-配位的 Cu(I)配合物与涉及配位溶剂分子的三元配合物之间存在动态平衡,这一观察结果得到了量子化学计算的进一步支持。综合光物理、电化学和溶液化学实验表明,来自 Cu(I)的电子转移不会与激发态荧光团的辐射去活化竞争,因此,Cu(I)诱导的荧光开关是动力学控制的。

相似文献

2
Electronically tuned 1,3,5-triarylpyrazolines as Cu(I)-selective fluorescent probes.
Org Biomol Chem. 2010 Jan 21;8(2):363-70. doi: 10.1039/b918311f. Epub 2009 Dec 2.
10
A highly selective turn-on fluorescent chemodosimeter for Cu(2+) through a Cu (2+)-promoted redox reaction.
J Fluoresc. 2014 Nov;24(6):1671-7. doi: 10.1007/s10895-014-1454-4. Epub 2014 Sep 16.

引用本文的文献

1
2
Small-Molecule Fluorescent Probes for Binding- and Activity-Based Sensing of Redox-Active Biological Metals.
Chem Rev. 2024 May 8;124(9):5846-5929. doi: 10.1021/acs.chemrev.3c00819. Epub 2024 Apr 24.
3
A selective and sensitive near-infrared fluorescent probe for real-time detection of Cu(i).
RSC Adv. 2021 Apr 21;11(24):14824-14828. doi: 10.1039/d1ra00725d. eCollection 2021 Apr 15.
4
Thioether Coordination Chemistry for Molecular Imaging of Copper in Biological Systems.
Isr J Chem. 2016 Oct 1;56(9-10):724-737. doi: 10.1002/ijch.201600023. Epub 2016 Jul 25.
6
Analytical Methods for Imaging Metals in Biology: From Transition Metal Metabolism to Transition Metal Signaling.
Anal Chem. 2017 Jan 3;89(1):22-41. doi: 10.1021/acs.analchem.6b04631. Epub 2016 Dec 15.
7
Synthetic fluorescent probes for studying copper in biological systems.
Chem Soc Rev. 2015 Jul 7;44(13):4400-14. doi: 10.1039/c4cs00346b. Epub 2015 Feb 18.
8
Probing ternary complex equilibria of crown ether ligands by time-resolved fluorescence spectroscopy.
J Phys Chem B. 2014 Dec 11;118(49):14196-202. doi: 10.1021/jp5077406. Epub 2014 Oct 14.
9
Positron emission tomography for measurement of copper fluxes in live organisms.
Ann N Y Acad Sci. 2014 May;1314(1):24-31. doi: 10.1111/nyas.12383. Epub 2014 Mar 14.
10
Synthetic fluorescent probes for monovalent copper.
Curr Opin Chem Biol. 2013 Aug;17(4):656-62. doi: 10.1016/j.cbpa.2013.05.019. Epub 2013 Jun 13.

本文引用的文献

1
Electronically tuned 1,3,5-triarylpyrazolines as Cu(I)-selective fluorescent probes.
Org Biomol Chem. 2010 Jan 21;8(2):363-70. doi: 10.1039/b918311f. Epub 2009 Dec 2.
5
Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry.
Acc Chem Res. 2009 Jan 20;42(1):193-203. doi: 10.1021/ar8001409.
7
Tools and tactics for the optical detection of mercuric ion.
Chem Rev. 2008 Sep;108(9):3443-80. doi: 10.1021/cr068000q. Epub 2008 Jul 25.
8
Targeting the lysosome: fluorescent iron(III) chelators to selectively monitor endosomal/lysosomal labile iron pools.
J Med Chem. 2008 Aug 14;51(15):4539-52. doi: 10.1021/jm8001247. Epub 2008 Jul 15.
9
A bright and specific fluorescent sensor for mercury in water, cells, and tissue.
Angew Chem Int Ed Engl. 2007;46(35):6658-61. doi: 10.1002/anie.200701785.
10
Turn-on and ratiometric mercury sensing in water with a red-emitting probe.
J Am Chem Soc. 2007 May 9;129(18):5910-8. doi: 10.1021/ja068879r. Epub 2007 Apr 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验