Suppr超能文献

整合元件 CJIE2 和 CJIE4 编码的核酸酶抑制空肠弯曲菌的自然转化。

Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural transformation of Campylobacter jejuni.

机构信息

Central Veterinary Institute of Wageningen UR, Department of Bacteriology and TSEs, Lelystad, The Netherlands.

出版信息

J Bacteriol. 2010 Feb;192(4):936-41. doi: 10.1128/JB.00867-09. Epub 2009 Dec 18.

Abstract

The species Campylobacter jejuni is naturally competent for DNA uptake; nevertheless, nonnaturally transformable strains do exist. For a subset of strains we previously showed that a periplasmic DNase, encoded by dns, inhibits natural transformation in C. jejuni. In the present study, genetic factors coding for DNase activity in the absence of dns were identified. DNA arrays indicated that nonnaturally transformable dns-negative strains contain putative DNA/RNA nonspecific endonucleases encoded by CJE0566 and CJE1441 of strain RM1221. These genes are located on C. jejuni integrated elements 2 and 4. Expression of CJE0566 and CJE1441 from strain RM1221 and a homologous gene from strain 07479 in DNase-negative Escherichia coli and C. jejuni strains indicated that these genes code for DNases. Genetic transfer of the genes to a naturally transformable C. jejuni strain resulted in a decreased efficiency of natural transformation. Modeling suggests that the C. jejuni DNases belong to the Serratia nuclease family. Overall, the data indicate that the acquisition of prophage-encoded DNA/RNA nonspecific endonucleases inhibits the natural transformability of C. jejuni through hydrolysis of DNA.

摘要

空肠弯曲菌是一种自然感受态的细菌,能够摄取 DNA;然而,也存在非自然转化的菌株。我们之前曾研究过,一组空肠弯曲菌菌株的周质 DNA 酶(由 dns 编码)抑制了其天然转化。在本研究中,我们鉴定了缺乏 dns 时编码 DNA 酶活性的遗传因素。DNA 芯片表明,非自然转化的 dns 阴性菌株含有由 RM1221 株的 CJE0566 和 CJE1441 编码的潜在的 DNA/RNA 非特异性内切酶。这些基因位于空肠弯曲菌整合元件 2 和 4 上。从 RM1221 株和 07479 株的同源基因表达 CJE0566 和 CJE1441,表明这些基因编码 DNA 酶。将这些基因转移到自然转化的空肠弯曲菌菌株中,导致天然转化效率降低。模型表明,空肠弯曲菌的 DNA 酶属于沙雷氏菌核酸酶家族。总的来说,这些数据表明,噬菌体编码的 DNA/RNA 非特异性内切酶的获得通过 DNA 水解抑制了空肠弯曲菌的自然转化能力。

相似文献

1
Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural transformation of Campylobacter jejuni.
J Bacteriol. 2010 Feb;192(4):936-41. doi: 10.1128/JB.00867-09. Epub 2009 Dec 18.
2
A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni.
J Bacteriol. 2009 Apr;191(7):2296-306. doi: 10.1128/JB.01430-08. Epub 2009 Jan 16.
3
Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.
PLoS One. 2015 Mar 24;10(3):e0121680. doi: 10.1371/journal.pone.0121680. eCollection 2015.
4
DNA sequence heterogeneity of Campylobacter jejuni CJIE4 prophages and expression of prophage genes.
PLoS One. 2014 Apr 22;9(4):e95349. doi: 10.1371/journal.pone.0095349. eCollection 2014.
5
A Cotransformation Method To Identify a Restriction-Modification Enzyme That Reduces Conjugation Efficiency in Campylobacter jejuni.
Appl Environ Microbiol. 2018 Nov 15;84(23). doi: 10.1128/AEM.02004-18. Print 2018 Dec 1.
7
Sequence variability of Campylobacter temperate bacteriophages.
BMC Microbiol. 2008 Mar 20;8:49. doi: 10.1186/1471-2180-8-49.
9
Methylation-dependent DNA discrimination in natural transformation of .
Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):E8053-E8061. doi: 10.1073/pnas.1703331114. Epub 2017 Aug 30.
10
Genetic manipulation of Campylobacter jejuni.
Curr Protoc Microbiol. 2008 Aug;Chapter 8:Unit 8A.2.1-8A.2.17. doi: 10.1002/9780471729259.mc08a02s10.

引用本文的文献

1
American black bear (Ursus americanus) as a potential host for Campylobacter jejuni.
PLoS One. 2025 Sep 9;20(9):e0331559. doi: 10.1371/journal.pone.0331559. eCollection 2025.
4
Manipulation of natural transformation by AbaR-type islands promotes fixation of antibiotic resistance in .
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2409843121. doi: 10.1073/pnas.2409843121. Epub 2024 Sep 17.
5
Genomic Analysis Points to Multiple Genetic Mechanisms for Non-Transformable ST-50.
Microorganisms. 2024 Feb 4;12(2):327. doi: 10.3390/microorganisms12020327.
7
The Use of Interdisciplinary Approaches to Understand the Biology of .
Microorganisms. 2022 Dec 16;10(12):2498. doi: 10.3390/microorganisms10122498.
8
Cryptic Prophages Contribution for and Introgression.
Microorganisms. 2022 Feb 26;10(3):516. doi: 10.3390/microorganisms10030516.
9
Application of Bacteriophages to Limit in Poultry Production.
Front Microbiol. 2022 Jan 5;12:458721. doi: 10.3389/fmicb.2021.458721. eCollection 2021.

本文引用的文献

1
A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni.
J Bacteriol. 2009 Apr;191(7):2296-306. doi: 10.1128/JB.01430-08. Epub 2009 Jan 16.
2
Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization.
Cell Host Microbe. 2008 Nov 13;4(5):425-33. doi: 10.1016/j.chom.2008.10.002.
3
SMART 6: recent updates and new developments.
Nucleic Acids Res. 2009 Jan;37(Database issue):D229-32. doi: 10.1093/nar/gkn808. Epub 2008 Oct 31.
4
Sequence variability of Campylobacter temperate bacteriophages.
BMC Microbiol. 2008 Mar 20;8:49. doi: 10.1186/1471-2180-8-49.
5
The nuclease a-inhibitor complex is characterized by a novel metal ion bridge.
J Biol Chem. 2007 Feb 23;282(8):5682-90. doi: 10.1074/jbc.M605986200. Epub 2006 Nov 30.
6
The Campylobacter jejuni PhosS/PhosR operon represents a non-classical phosphate-sensitive two-component system.
Mol Microbiol. 2006 Oct;62(1):278-91. doi: 10.1111/j.1365-2958.2006.05372.x. Epub 2006 Aug 31.
8
The ins and outs of DNA transfer in bacteria.
Science. 2005 Dec 2;310(5753):1456-60. doi: 10.1126/science.1114021.
9
The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling.
Bioinformatics. 2006 Jan 15;22(2):195-201. doi: 10.1093/bioinformatics/bti770. Epub 2005 Nov 13.
10
Mechanisms of, and barriers to, horizontal gene transfer between bacteria.
Nat Rev Microbiol. 2005 Sep;3(9):711-21. doi: 10.1038/nrmicro1234.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验