Medical Physics Department, San Raffaele Scientific Institute, Via Olgettina N. 60, Milan, Italy.
Phys Med Biol. 2010 Jan 21;55(2):483-95. doi: 10.1088/0031-9155/55/2/010. Epub 2009 Dec 21.
In this paper, we showed that Cerenkov radiation (CR) escaping from the surface of small living animals injected with (18)F-FDG can be detected with optical imaging techniques. (18)F decays by emitting positrons with a maximum energy of 0.635 MeV; such positrons, when travelling into tissues faster than the speed of light in the same medium, are responsible of CR emission. A detailed model of the CR spectrum considering the positron energy spectrum was developed in order to quantify the amount of light emission. The results presented in this work were obtained using a commercial optical imager equipped with charged coupled detectors (CCD). Our data open the door to optical imaging (OI) in vivo of the glucose metabolism, at least in pre-clinical research. We found that the heart and bladder can be clearly identified in the animal body reflecting the accumulation of the (18)F-FDG. Moreover, we describe two different methods based on the spectral analysis of the CR that can be used to estimate the depth of the source inside the animal. We conclude that (18)F-FDG can be employed as it is as a bimodal tracer for positron emission tomography (PET) and OI techniques. Our results are encouraging, suggesting that it could be possible to apply the proposed approach not only to beta(+) but also to pure beta(-) emitters.
在本文中,我们展示了可以通过光学成像技术检测从小型活体动物(注射了 18F-FDG)表面逃逸出的切伦科夫辐射(CR)。 18F 通过发射最大能量为 0.635 MeV 的正电子而衰变;当这些正电子在组织中传播的速度快于同一介质中的光速时,就会产生 CR 发射。为了量化光发射量,我们开发了一个考虑正电子能谱的 CR 光谱详细模型。本文介绍的结果是使用配备有电荷耦合器件(CCD)的商业光学成像仪获得的。我们的数据为体内葡萄糖代谢的光学成像(OI)打开了大门,至少在临床前研究中是如此。我们发现,在动物体内可以清楚地识别心脏和膀胱,这反映了 18F-FDG 的积累。此外,我们还描述了两种基于 CR 光谱分析的不同方法,可用于估计动物内部源的深度。我们得出结论,18F-FDG 可以作为正电子发射断层扫描(PET)和 OI 技术的双模态示踪剂使用。我们的结果令人鼓舞,表明不仅可以将所提出的方法应用于β+,还可以应用于纯β-发射体。