Suppr超能文献

光动力化疗(PACT):激发态 d 区金属在医学中的潜力。

Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine.

机构信息

Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.

出版信息

Dalton Trans. 2009 Dec 28(48):10690-701. doi: 10.1039/b917753a. Epub 2009 Nov 11.

Abstract

The fields of phototherapy and of inorganic chemotherapy both have long histories. Inorganic photoactivated chemotherapy (PACT) offers both temporal and spatial control over drug activation and has remarkable potential for the treatment of cancer. Following photoexcitation, a number of different decay pathways (both photophysical and photochemical) are available to a metal complex. These pathways can result in radiative energy release, loss of ligands or transfer of energy to another species, such as triplet oxygen. We discuss the features which need to be considered when developing a metal-based anticancer drug, and the common mechanisms by which the current complexes are believed to operate. We then provide a comprehensive overview of PACT developments for complexes of the different d-block metals for the treatment of cancer, detailing the more established areas concerning Ti, V, Cr, Mn, Re, Fe, Ru, Os, Co, Rh, Pt, and Cu and also highlighting areas where there is potential for greater exploration. Nanoparticles (Ag, Au) and quantum dots (Cd) are also discussed for their photothermal destructive potential. We also discuss the potential held in particular by mixed-metal systems and Ru complexes.

摘要

光疗和无机化疗领域都有着悠久的历史。无机光激活化疗(PACT)在药物激活方面提供了时间和空间的控制,具有治疗癌症的巨大潜力。光激发后,金属配合物有许多不同的衰减途径(光物理和光化学)可供选择。这些途径可导致辐射能量释放、配体损失或能量转移到另一种物质,如三重态氧。我们讨论了在开发基于金属的抗癌药物时需要考虑的特征,以及当前复合物被认为的常见作用机制。然后,我们全面概述了不同 d 区金属配合物用于癌症治疗的 PACT 进展,详细介绍了 Ti、V、Cr、Mn、Re、Fe、Ru、Os、Co、Rh、Pt 和 Cu 等方面更成熟的领域,并强调了有潜力进一步探索的领域。还讨论了银、金纳米粒子(Ag、Au)和量子点(Cd)在光热破坏方面的潜力。我们还讨论了混合金属系统和 Ru 配合物的潜力。

相似文献

1
Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine.
Dalton Trans. 2009 Dec 28(48):10690-701. doi: 10.1039/b917753a. Epub 2009 Nov 11.
2
The Development of Ru(II)-Based Photoactivated Chemotherapy Agents.
Molecules. 2021 Sep 18;26(18):5679. doi: 10.3390/molecules26185679.
3
New Designs for Phototherapeutic Transition Metal Complexes.
Angew Chem Int Ed Engl. 2020 Jan 2;59(1):61-73. doi: 10.1002/anie.201905171. Epub 2019 Sep 24.
4
Ruthenium-Based Photoactivated Chemotherapy.
J Am Chem Soc. 2023 Nov 1;145(43):23397-23415. doi: 10.1021/jacs.3c01135. Epub 2023 Oct 17.
5
6
Advances in the Design of Photoactivatable Metallodrugs: Excited State Metallomics.
Angew Chem Int Ed Engl. 2025 Feb 24;64(9):e202423335. doi: 10.1002/anie.202423335. Epub 2025 Jan 13.
8
Insights into the anticancer photodynamic activity of Ir(III) and Ru(II) polypyridyl complexes bearing β-carboline ligands.
Eur J Med Chem. 2024 Oct 5;276:116618. doi: 10.1016/j.ejmech.2024.116618. Epub 2024 Jun 28.
9
Ruthenium Complexes as Anticancer Agents: A Brief History and Perspectives.
Drug Des Devel Ther. 2020 Dec 3;14:5375-5392. doi: 10.2147/DDDT.S275007. eCollection 2020.
10
A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
Spectrochim Acta A Mol Biomol Spectrosc. 2011 Jan;78(1):7-28. doi: 10.1016/j.saa.2010.08.001. Epub 2010 Aug 17.

引用本文的文献

2
Near-infrared light-activatable iridium(iii) complexes for synergistic photodynamic and photochemotherapy.
Chem Sci. 2025 Mar 5;16(15):6376-6382. doi: 10.1039/d5sc00156k. eCollection 2025 Apr 9.
3
The Combination of Active-Targeted Photodynamic Therapy and Photoactivated Chemotherapy for Enhanced Cancer Treatment.
J Biophotonics. 2025 Jun;18(6):e70005. doi: 10.1002/jbio.70005. Epub 2025 Mar 14.
4
Photo-ejected ligands hyperpolarized by parahydrogen in reversible exchange.
Chem Commun (Camb). 2025 Mar 19;61(24):4674-4677. doi: 10.1039/d4cc06807f.
6
Two in one: merging photoactivated chemotherapy and photodynamic therapy to fight cancer.
Chem Sci. 2024 Oct 15;15(43):17760-80. doi: 10.1039/d4sc04608k.
8
Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics.
Small Methods. 2024 Nov;8(11):e2400563. doi: 10.1002/smtd.202400563. Epub 2024 Sep 25.
9
RuBi-Ruxolitinib: A Photoreleasable Antitumor JAK Inhibitor.
J Am Chem Soc. 2024 May 15;146(19):13317-13325. doi: 10.1021/jacs.4c01720. Epub 2024 May 3.
10
A colorimetric approach for monitoring the reduction of platinum(iv) complexes in aqueous solution.
New J Chem. 2024 Apr 10;48(17):7548-7551. doi: 10.1039/d4nj00859f. eCollection 2024 Apr 29.

本文引用的文献

1
Nucleotide Platination Induced by Visible Light.
Angew Chem Int Ed Engl. 1999 May 17;38(10):1460-1463. doi: 10.1002/(SICI)1521-3773(19990517)38:10<1460::AID-ANIE1460>3.0.CO;2-Z.
2
Decomposition pathways for the photoactivated anticancer complex cis,trans,cis-[Pt(N3)2(OH)2(NH3)2]: insights from DFT calculations.
Phys Chem Chem Phys. 2009 Nov 28;11(44):10311-6. doi: 10.1039/b912496a. Epub 2009 Sep 23.
5
Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots.
Toxicol Appl Pharmacol. 2009 Aug 1;238(3):280-8. doi: 10.1016/j.taap.2009.04.010. Epub 2009 Apr 18.
6
Photodynamic therapy of virus-associated precancer and early stages cancer of cervix uteri.
Photodiagnosis Photodyn Ther. 2008 Dec;5(4):256-9. doi: 10.1016/j.pdpdt.2008.09.005. Epub 2008 Nov 14.
7
Oxovanadium(IV)-based near-IR PDT agents: design to biological evaluation.
Chem Commun (Camb). 2009 Apr 7(13):1703-5. doi: 10.1039/b822229k. Epub 2009 Feb 16.
8
Synthesis, characterisation and photochemistry of Pt(IV) pyridyl azido acetato complexes.
Dalton Trans. 2009 Apr 7(13):2315-25. doi: 10.1039/b820550g. Epub 2009 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验