Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
J Phys Chem B. 2009 Dec 31;113(52):16705-10. doi: 10.1021/jp9080614.
Protein arginine deiminase 4 (PAD4) catalyzes the citrullination of the peptidylarginine via two successive stages: deimination and hydrolysis. Herein, by employing state-of-the-art Born-Oppenheimer ab initio QM/MM molecular dynamics simulations with the umbrella sampling method, we characterized the catalytic mechanism of the hydrolysis reaction: first, the nucleophilic attack of a water molecule to the C(zeta) of the thiouronium intermediate yields a stable tetrahedral intermediate, and then the S-C(zeta) bond breaks to generate the final product, citrulline. Throughout the hydrolysis reaction, His471 and Asp473 play pivotal catalytic roles by first enhancing the nucleophilic ability of the active water through forming shorter and low-barrier hydrogen bonds and then by serving as proton-accepting groups to deprotonate the water molecule, which is consistent with experimental findings. At the transition state, the spontaneous proton transfer among the reactive water, His471 and Asp473 have been observed. The determined overall free energy barrier for this hydrolysis stage is 16.5 kcal x mol(-1), which is lower than the barrier of 20.9 kcal x mol(-1) for the deimination stage determined previously with the same computational approach [J. Phys. Chem. B 2009, 113, 12750-12758]. Thus, the rate-determining step of the PAD4-catalyzed citrullination is the first step of the deimination. Our current work further demonstrates the strength and applicability of the ab initio QM/MM MD approach in simulating enzyme reactions.
蛋白质精氨酸脱亚氨酶 4(PAD4)通过两个连续的阶段催化肽精氨酸的瓜氨酸化:脱亚胺和水解。在此,通过采用最先进的 Born-Oppenheimer 从头算 QM/MM 分子动力学模拟与伞状采样方法,我们描述了水解反应的催化机制:首先,水分子的亲核攻击硫脲中间体的 C(zeta) 产生稳定的四面体型中间体,然后 S-C(zeta) 键断裂生成最终产物瓜氨酸。在水解反应过程中,His471 和 Asp473 通过首先通过形成更短和低能垒氢键来增强活性水的亲核能力,然后作为质子接受基团来使水分子去质子化,从而发挥关键的催化作用,这与实验结果一致。在过渡态,观察到反应水中、His471 和 Asp473 之间的自发质子转移。用相同的计算方法确定的该水解阶段的总自由能势垒为 16.5 kcal x mol(-1),低于先前确定的脱亚胺阶段的 20.9 kcal x mol(-1)。因此,PAD4 催化的瓜氨酸化的速率决定步骤是脱亚胺的第一步。我们目前的工作进一步证明了从头算 QM/MM MD 方法在模拟酶反应中的优势和适用性。