Suppr超能文献

阐明微型锌指水解酶的催化机制。

Elucidation of the Catalytic Mechanism of a Miniature Zinc Finger Hydrolase.

机构信息

Max-Planck-Institut für Kohlenforschung , 45470 Mülheim an der Ruhr, Germany.

Fakultät für Chemie und Chemische Biologie, Physikalische Chemie I, Technische Universität Dortmund , 44227 Dortmund, Germany.

出版信息

J Phys Chem B. 2017 Jul 6;121(26):6390-6398. doi: 10.1021/acs.jpcb.7b05027. Epub 2017 Jun 24.

Abstract

To improve our mechanistic understanding of zinc metalloenzymes, we report a joint computational and experimental study of a minimal carbonic anhydrase (CA) mimic, a 22-residue Zn-finger hydrolase. We combine classical molecular dynamics (MD) simulations, quantum mechanics/molecular mechanics (QM/MM) geometry optimizations, and QM/MM free energy simulations with ambient and high-pressure kinetic measurements to investigate the mechanism of the hydrolysis of the substrate p-nitrophenylacetate (pNPA). The zinc center of the hydrolase prefers a pentacoordinated geometry, as found in most naturally occurring CAs and CA-like enzymes. Two possible mechanisms for the catalytic reaction are investigated. The first one is analogous to the commonly accepted mechanism for CA-like enzymes: a sequential pathway, in which a Zn-bound hydroxide acts as a nucleophile and the hydrolysis proceeds through a tetrahedral intermediate. The initial rate-limiting step of this reaction is the nucleophilic attack of the hydroxide on pNPA to form the tetrahedral intermediate. The computed free energy barrier of 18.5 kcal/mol is consistent with the experimental value of 20.5 kcal/mol obtained from our kinetics experiments. We also explore an alternative reverse protonation pathway for the hydrolase, in which a nearby hydroxide ion from the bulk acts as the nucleophile (instead of a zinc-bound hydroxide). According to QM/MM MD simulations, hydrolysis occurs spontaneously along this pathway. However, this second scenario is not viable in our system, as the tertiary structure of the hydrolase lacks a suitably positioned residue that would act as a general base and generate a hydroxide ion from a nearby bulk water molecule. Hence, our combined theoretical and experimental study indicates that the investigated minimal CA mimic retains the essential mechanistic features of CA-like enzyme catalysis. The high-pressure experiments show that its catalytic efficiency can be enhanced by applying hydrostatic pressure. According to the simulations, more drastic improvements might be afforded by mutations that make the reverse protonation pathway accessible.

摘要

为了深入了解锌金属酶的作用机制,我们对一个最小的碳酸酐酶(CA)模拟物,即一个 22 个残基的锌指水解酶,进行了计算和实验联合研究。我们结合经典分子动力学(MD)模拟、量子力学/分子力学(QM/MM)几何优化和 QM/MM 自由能模拟,以及环境和高压动力学测量,研究了底物对硝基苯乙酸酯(pNPA)水解的机制。水解酶的锌中心偏好五配位几何构型,这在大多数天然存在的 CA 和 CA 样酶中都有发现。我们研究了两种可能的催化反应机制。第一种机制类似于 CA 样酶中常见的机制:一个顺序途径,其中一个锌结合的氢氧根离子作为亲核试剂,水解通过四面体中间体进行。该反应的初始限速步骤是氢氧根离子对 pNPA 的亲核攻击,形成四面体中间体。计算得到的自由能垒为 18.5 kcal/mol,与我们动力学实验得到的 20.5 kcal/mol 的实验值一致。我们还探索了水解酶的另一种替代反向质子化途径,其中来自体相的附近氢氧根离子作为亲核试剂(而不是锌结合的氢氧根离子)。根据 QM/MM MD 模拟,水解沿着这条途径自发发生。然而,在我们的系统中,这种第二种情况是不可行的,因为水解酶的三级结构缺乏一个合适位置的残基,该残基可以作为一个广义碱,从附近的水分子中生成氢氧根离子。因此,我们的理论和实验联合研究表明,所研究的最小 CA 模拟物保留了 CA 样酶催化的基本作用机制特征。高压实验表明,施加静水压力可以提高其催化效率。根据模拟结果,通过突变使反向质子化途径变得可行,可能会带来更显著的改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验