Kahraman Emine, Vasconcelos Daniela, Ribeiro Beatriz, Monteiro Ana Carolina, Mastromatteo Enzo, Bortolin Andrea, Couto Marina, Boschis Laura, Lamghari Meriem, Neto Estrela
INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
Mater Today Bio. 2025 Jan 13;31:101491. doi: 10.1016/j.mtbio.2025.101491. eCollection 2025 Apr.
Osteoarthritis (OA) is an inflammatory musculoskeletal disorder that results in cartilage breakdown and alterations in the surrounding tissue microenvironment. Imbalances caused by inflammation and catabolic processes potentiate pathological nerves and blood vessels outgrowth toward damaged areas leading to pain in the patients. Yet, the precise mechanisms leading the nerve sprouting into the aneural cartilaginous tissue remain elusive. In this work, we aim to recapitulate the hallmarks of OA pathophysiology, including the sensory innervation profile, and provide a sensitive and reliable analytical tool to monitor the disease progression at microscale. Leveraging the use of patient-derived cells and bioengineering cutting-edge technologies, we engineered cartilage-like microtissues composed of primary human chondrocytes encapsulated in gelatin methacrylate hydrogel. Engineered constructs patterned inside microfluidic devices show the expression of cartilage markers, namely collagen type II, aggrecan, SOX-9 and glycosaminoglycans. Upon pro-inflammatory triggering, using primary human pro-inflammatory macrophage secretome, hallmarks of OA are recapitulated namely catabolic processes of human chondrocytes and the sensory innervation profile, supported by gene expression and functional assays. To monitor the OA micropathological system, a highly sensitive technology - EliChip™ - is presented to quantitively assess the molecular signature of cytokines and growth factors (interleukin 6 and nerve growth factor) produced from a single microfluidic chip. Herein, we report a miniaturized pathophysiological model and analytical tool to foster the neuro-immune interactions playing a role in cartilage-related disorders.
骨关节炎(OA)是一种炎症性肌肉骨骼疾病,会导致软骨分解以及周围组织微环境的改变。炎症和分解代谢过程引起的失衡会促使病理性神经和血管向受损区域生长,从而导致患者疼痛。然而,神经向无神经软骨组织中萌发的确切机制仍不清楚。在这项研究中,我们旨在重现骨关节炎病理生理学的特征,包括感觉神经支配情况,并提供一种灵敏可靠的分析工具,在微观尺度上监测疾病进展。利用患者来源的细胞和生物工程前沿技术,我们构建了由封装在甲基丙烯酸明胶水凝胶中的原代人软骨细胞组成的类软骨微组织。在微流控装置内部构建的工程化结构显示出软骨标志物的表达,即II型胶原蛋白、聚集蛋白聚糖、SOX-9和糖胺聚糖。在使用原代人促炎巨噬细胞分泌组进行促炎触发后,通过基因表达和功能分析,重现了骨关节炎的特征,即人软骨细胞的分解代谢过程和感觉神经支配情况。为了监测骨关节炎的微观病理系统,我们展示了一种高灵敏度技术——EliChip™,用于定量评估单个微流控芯片产生的细胞因子和生长因子(白细胞介素6和神经生长因子)的分子特征。在此,我们报告了一种小型化的病理生理模型和分析工具,以促进在软骨相关疾病中起作用的神经免疫相互作用。