Suppr超能文献

使用GeNN和NEST对大规模脉冲神经网络进行高效参数校准和实时模拟。

Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST.

作者信息

Schmitt Felix Johannes, Rostami Vahid, Nawrot Martin Paul

机构信息

Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany.

出版信息

Front Neuroinform. 2023 Feb 10;17:941696. doi: 10.3389/fninf.2023.941696. eCollection 2023.

Abstract

Spiking neural networks (SNNs) represent the state-of-the-art approach to the biologically realistic modeling of nervous system function. The systematic calibration for multiple free model parameters is necessary to achieve robust network function and demands high computing power and large memory resources. Special requirements arise from closed-loop model simulation in virtual environments and from real-time simulation in robotic application. Here, we compare two complementary approaches to efficient large-scale and real-time SNN simulation. The widely used NEural Simulation Tool (NEST) parallelizes simulation across multiple CPU cores. The GPU-enhanced Neural Network (GeNN) simulator uses the highly parallel GPU-based architecture to gain simulation speed. We quantify fixed and variable simulation costs on single machines with different hardware configurations. As a benchmark model, we use a spiking cortical attractor network with a topology of densely connected excitatory and inhibitory neuron clusters with homogeneous or distributed synaptic time constants and in comparison to the random balanced network. We show that simulation time scales linearly with the simulated biological model time and, for large networks, approximately linearly with the model size as dominated by the number of synaptic connections. Additional fixed costs with GeNN are almost independent of model size, while fixed costs with NEST increase linearly with model size. We demonstrate how GeNN can be used for simulating networks with up to 3.5 · 10 neurons (> 3 · 10synapses) on a high-end GPU, and up to 250, 000 neurons (25 · 10 synapses) on a low-cost GPU. Real-time simulation was achieved for networks with 100, 000 neurons. Network calibration and parameter grid search can be efficiently achieved using batch processing. We discuss the advantages and disadvantages of both approaches for different use cases.

摘要

脉冲神经网络(SNN)是对神经系统功能进行生物逼真建模的最先进方法。对多个自由模型参数进行系统校准对于实现强大的网络功能是必要的,并且需要高计算能力和大内存资源。虚拟环境中的闭环模型模拟和机器人应用中的实时模拟会产生特殊要求。在这里,我们比较了两种互补的方法来进行高效的大规模和实时SNN模拟。广泛使用的神经模拟工具(NEST)在多个CPU核心上并行化模拟。GPU增强神经网络(GeNN)模拟器使用基于GPU的高度并行架构来提高模拟速度。我们在具有不同硬件配置的单机上量化固定和可变模拟成本。作为基准模型,我们使用一个具有密集连接的兴奋性和抑制性神经元簇拓扑结构的脉冲皮质吸引子网络,其具有均匀或分布式的突触时间常数,并与随机平衡网络进行比较。我们表明,模拟时间与模拟的生物模型时间成线性比例,对于大型网络,大致与由突触连接数量主导的模型大小成线性比例。GeNN的额外固定成本几乎与模型大小无关,而NEST的固定成本则随模型大小线性增加。我们展示了GeNN如何用于在高端GPU上模拟多达3.5·10个神经元(>3·10个突触)的网络,以及在低成本GPU上模拟多达250,000个神经元(25·10个突触)的网络。对于具有100,000个神经元的网络实现了实时模拟。使用批处理可以有效地实现网络校准和参数网格搜索。我们讨论了这两种方法在不同用例中的优缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d561/9950635/8de375c43461/fninf-17-941696-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验