Keum Sehoon, Marchuk Douglas A
University Program in Genetics and Genomics and the Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
Circ Cardiovasc Genet. 2009 Dec;2(6):591-8. doi: 10.1161/CIRCGENETICS.109.883231. Epub 2009 Oct 19.
In a mouse model of focal cerebral ischemia, infarct volume is highly variable and strain dependent, but the natural genetic determinants responsible for this difference remain unknown. To identify genetic determinants regulating ischemic neuronal damage and to dissect apart the role of individual genes and physiological mechanisms in infarction in mice, we performed quantitative trait locus analysis of surgically induced cerebral infarct volume.
After permanent occlusion of the distal middle cerebral artery, infarct volume was determined for 16 inbred strains of mice, chromosome substitution strains, and for 2 intercross cohorts, F2 (B6xBALB/c) and F2 (B6xSWR/J). Genome-wide linkage analysis was performed for infarct volume as a quantitative trait. Infarct volume varied up to 30-fold between strains, with heritability estimated at 0.88. Overall, 3 quantitative trait locus were identified that modulate infarct volume, with a major locus (Civq1) on chromosome 7 accounting for >50% of the variation, with a combined LOD score of 21.7. Interval-specific single nucleotide polymorphism haplotype analysis for Civq1 results in 12 candidate genes.
The extent of ischemic tissue damage after distal middle cerebral artery occlusion in inbred strains of mice is modulated by genetic variation mapping to at least 3 different loci. A single locus on chromosome 7 determines the majority of the observed variation in the trait. This locus seems to be identical to LSq1, a locus conferring limb salvage and reperfusion in a mouse model of hindlimb ischemia. The identification of the genes underlying these loci may uncover novel genetic and physiological pathways that modulate cerebral infarction and provide new targets for therapeutic intervention in ischemic stroke, and possibly other ischemic diseases.
在局灶性脑缺血小鼠模型中,梗死体积具有高度变异性且依赖于品系,但造成这种差异的天然遗传决定因素仍不清楚。为了确定调节缺血性神经元损伤的遗传决定因素,并剖析个体基因和生理机制在小鼠梗死中的作用,我们对手术诱导的脑梗死体积进行了数量性状基因座分析。
在永久性闭塞大脑中动脉远端后,测定了16个近交系小鼠、染色体代换系小鼠以及2个杂交群体F2(B6xBALB/c)和F2(B6xSWR/J)的梗死体积。对梗死体积作为数量性状进行全基因组连锁分析。品系间梗死体积变化高达30倍,遗传力估计为0.88。总体而言,鉴定出3个调节梗死体积的数量性状基因座,其中位于7号染色体上的一个主要基因座(Civq1)占变异的>50%,联合LOD得分为21.7。对Civq1进行区间特异性单核苷酸多态性单倍型分析,得到12个候选基因。
近交系小鼠大脑中动脉远端闭塞后缺血组织损伤的程度受映射到至少3个不同基因座的遗传变异调节。7号染色体上的一个单一基因座决定了该性状中观察到的大部分变异。该基因座似乎与LSq1相同,LSq1是在小鼠后肢缺血模型中赋予肢体挽救和再灌注的一个基因座。确定这些基因座背后的基因可能会揭示调节脑梗死的新的遗传和生理途径,并为缺血性中风以及可能的其他缺血性疾病的治疗干预提供新的靶点。