Suppr超能文献

在抑制性眼球扫视任务中的最佳表现。

Optimal performance in a countermanding saccade task.

机构信息

Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA.

出版信息

Brain Res. 2010 Mar 8;1318:178-87. doi: 10.1016/j.brainres.2009.12.018. Epub 2009 Dec 23.

Abstract

Countermanding an action is a fundamental form of cognitive control. In a saccade-countermanding task, subjects are instructed that, if a stop signal appears shortly after a target, they are to maintain fixation rather than to make a saccade to the target. In recent years, recordings in the frontal eye fields and superior colliculus of behaving non-human primates have found correlates of such countermanding behavior in movement and fixation neurons. In this work, we extend a previous neural network model of countermanding to account for the high pre-target activity of fixation neurons. We propose that this activity reflects the functioning of control mechanisms responsible for optimizing performance. We demonstrate, using computer simulations and mathematical analysis, that pre-target fixation neuronal activity supports countermanding behavior that maximizes reward rate as a function of the stop signal delay, fraction of stop signal trials, intertrial interval, duration of timeout, and relative reward value. We propose experiments to test these predictions regarding optimal behavior.

摘要

撤销动作是认知控制的一种基本形式。在眼跳撤销任务中,会指示被试,如果在目标出现后不久出现停止信号,则他们应保持注视,而不是将视线转移到目标上。近年来,对行为非人类灵长类动物的额眼区和上丘的记录发现,运动和固定神经元中存在与这种撤销行为相关的关联。在这项工作中,我们扩展了以前的撤销神经网络模型,以解释固定神经元的高前目标活动。我们提出,这种活动反映了负责优化性能的控制机制的作用。我们使用计算机模拟和数学分析证明,前目标固定神经元活动支持最大化奖励率的撤销行为,其奖励率是停止信号延迟、停止信号试验比例、试验间间隔、超时持续时间和相对奖励值的函数。我们提出了实验来检验这些关于最佳行为的预测。

相似文献

1
Optimal performance in a countermanding saccade task.
Brain Res. 2010 Mar 8;1318:178-87. doi: 10.1016/j.brainres.2009.12.018. Epub 2009 Dec 23.
2
Relation of frontal eye field activity to saccade initiation during a countermanding task.
Exp Brain Res. 2008 Sep;190(2):135-51. doi: 10.1007/s00221-008-1455-0. Epub 2008 Jul 5.
3
Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity.
J Neurophysiol. 1998 Feb;79(2):817-34. doi: 10.1152/jn.1998.79.2.817.
4
Influence of history on saccade countermanding performance in humans and macaque monkeys.
Vision Res. 2007 Jan;47(1):35-49. doi: 10.1016/j.visres.2006.08.032. Epub 2006 Nov 1.
5
Express saccades during a countermanding task.
J Neurophysiol. 2020 Aug 1;124(2):484-496. doi: 10.1152/jn.00365.2020. Epub 2020 Jul 15.
6
Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding.
J Neurophysiol. 2009 Dec;102(6):3091-100. doi: 10.1152/jn.00270.2009. Epub 2009 Sep 23.
8
Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model.
J Neurosci. 2009 Jul 15;29(28):9059-71. doi: 10.1523/JNEUROSCI.6164-08.2009.
9
Neural basis of adaptive response time adjustment during saccade countermanding.
J Neurosci. 2011 Aug 31;31(35):12604-12. doi: 10.1523/JNEUROSCI.1868-11.2011.
10
Contextual response time adaptation in the countermanding performance of rats.
Neuroscience. 2016 Nov 19;337:200-217. doi: 10.1016/j.neuroscience.2016.09.009. Epub 2016 Sep 16.

引用本文的文献

1
Diurnal variation and practice effects in saccade task performance.
Exp Brain Res. 2025 Jul 23;243(8):188. doi: 10.1007/s00221-025-07131-7.
3
Behavioural and computational varieties of response inhibition in eye movements.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 19;372(1718). doi: 10.1098/rstb.2016.0196.
4
Models of inhibitory control.
Philos Trans R Soc Lond B Biol Sci. 2017 Apr 19;372(1718). doi: 10.1098/rstb.2016.0193.
5
Proactive inhibitory control: A general biasing account.
Cogn Psychol. 2016 May;86:27-61. doi: 10.1016/j.cogpsych.2016.01.004. Epub 2016 Feb 7.
6
Inhibitory control in mind and brain 2.0: blocked-input models of saccadic countermanding.
Psychol Rev. 2015 Apr;122(2):115-47. doi: 10.1037/a0038893. Epub 2015 Feb 23.
7
Microsaccade production during saccade cancelation in a stop-signal task.
Vision Res. 2016 Jan;118:5-16. doi: 10.1016/j.visres.2014.10.025. Epub 2014 Nov 6.
8
Production, control, and visual guidance of saccadic eye movements.
ISRN Neurol. 2013 Oct 23;2013:752384. doi: 10.1155/2013/752384. eCollection 2013.
9
The countermanding task revisited: mimicry of race models.
J Neurosci. 2013 Jul 24;33(30):12150-1. doi: 10.1523/JNEUROSCI.2091-13.2013.
10
Reprogramming movements: extraction of motor intentions from cortical ensemble activity when movement goals change.
Front Neuroeng. 2012 Jul 18;5:16. doi: 10.3389/fneng.2012.00016. eCollection 2012.

本文引用的文献

1
Proactive inhibitory control and attractor dynamics in countermanding action: a spiking neural circuit model.
J Neurosci. 2009 Jul 15;29(28):9059-71. doi: 10.1523/JNEUROSCI.6164-08.2009.
2
Proactive adjustments of response strategies in the stop-signal paradigm.
J Exp Psychol Hum Percept Perform. 2009 Jun;35(3):835-54. doi: 10.1037/a0012726.
3
Looking before you leap: a theory of motivated control of action.
Cognition. 2009 Jul;112(1):141-58. doi: 10.1016/j.cognition.2009.03.006. Epub 2009 May 5.
5
A neural mechanism for microsaccade generation in the primate superior colliculus.
Science. 2009 Feb 13;323(5916):940-3. doi: 10.1126/science.1166112.
7
Long-term aftereffects of response inhibition: memory retrieval, task goals, and cognitive control.
J Exp Psychol Hum Percept Perform. 2008 Oct;34(5):1229-35. doi: 10.1037/0096-1523.34.5.1229.
8
Response inhibition in the stop-signal paradigm.
Trends Cogn Sci. 2008 Nov;12(11):418-24. doi: 10.1016/j.tics.2008.07.005.
9
Short-term aftereffects of response inhibition: repetition priming or between-trial control adjustments?
J Exp Psychol Hum Percept Perform. 2008 Apr;34(2):413-26. doi: 10.1037/0096-1523.34.2.413.
10
Executive control of gaze by the frontal lobes.
Cogn Affect Behav Neurosci. 2007 Dec;7(4):396-412. doi: 10.3758/cabn.7.4.396.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验