Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
Dis Model Mech. 2010 Mar-Apr;3(3-4):194-208. doi: 10.1242/dmm.004267. Epub 2009 Dec 28.
alpha-Synuclein (alpha-syn) is a small lipid-binding protein involved in vesicle trafficking whose function is poorly characterized. It is of great interest to human biology and medicine because alpha-syn dysfunction is associated with several neurodegenerative disorders, including Parkinson's disease (PD). We previously created a yeast model of alpha-syn pathobiology, which established vesicle trafficking as a process that is particularly sensitive to alpha-syn expression. We also uncovered a core group of proteins with diverse activities related to alpha-syn toxicity that is conserved from yeast to mammalian neurons. Here, we report that a yeast strain expressing a somewhat higher level of alpha-syn also exhibits strong defects in mitochondrial function. Unlike our previous strain, genetic suppression of endoplasmic reticulum (ER)-to-Golgi trafficking alone does not suppress alpha-syn toxicity in this strain. In an effort to identify individual compounds that could simultaneously rescue these apparently disparate pathological effects of alpha-syn, we screened a library of 115,000 compounds. We identified a class of small molecules that reduced alpha-syn toxicity at micromolar concentrations in this higher toxicity strain. These compounds reduced the formation of alpha-syn foci, re-established ER-to-Golgi trafficking and ameliorated alpha-syn-mediated damage to mitochondria. They also corrected the toxicity of alpha-syn in nematode neurons and in primary rat neuronal midbrain cultures. Remarkably, the compounds also protected neurons against rotenone-induced toxicity, which has been used to model the mitochondrial defects associated with PD in humans. That single compounds are capable of rescuing the diverse toxicities of alpha-syn in yeast and neurons suggests that they are acting on deeply rooted biological processes that connect these toxicities and have been conserved for a billion years of eukaryotic evolution. Thus, it seems possible to develop novel therapeutic strategies to simultaneously target the multiple pathological features of PD.
α-突触核蛋白(α-syn)是一种参与囊泡运输的小脂结合蛋白,其功能尚未完全阐明。由于α-syn 功能障碍与包括帕金森病(PD)在内的几种神经退行性疾病有关,因此它对人类生物学和医学具有重要意义。我们之前创建了一种酵母 α-syn 病理生物学模型,该模型确定了囊泡运输是一种对 α-syn 表达特别敏感的过程。我们还发现了一组核心蛋白质,它们具有与 α-syn 毒性相关的多种不同的活性,这些蛋白质从酵母到哺乳动物神经元都是保守的。在这里,我们报告说,表达稍高水平的 α-syn 的酵母菌株也表现出强烈的线粒体功能缺陷。与我们之前的菌株不同,单独抑制内质网(ER)到高尔基体的运输并不能抑制该菌株中 α-syn 的毒性。为了鉴定能够同时挽救 α-syn 的这些明显不同的病理效应的单个化合物,我们筛选了 115000 种化合物的文库。我们鉴定出一类小分子,可在这种更高毒性的菌株中以微摩尔浓度降低 α-syn 的毒性。这些化合物减少了 α-syn 焦点的形成,重建了 ER 到高尔基体的运输,并改善了 α-syn 对线粒体的损伤。它们还纠正了线虫神经元和原代大鼠中脑神经元培养物中 α-syn 的毒性。值得注意的是,这些化合物还保护神经元免受鱼藤酮诱导的毒性,鱼藤酮已被用于模拟人类 PD 与线粒体缺陷相关的毒性。单一化合物能够挽救酵母和神经元中 α-syn 的多种毒性,这表明它们作用于连接这些毒性并在真核生物进化的十亿年中得到保守的深层生物学过程。因此,似乎有可能开发出针对 PD 的多种病理特征的新型治疗策略。