Peng C-K, Costa Madalena, Goldberger Ary L
Margret & H.A. Rey Institute of Nonlinear Dynamics in Physiology and Medicine Division of Interdisciplinary Medicine and Biotechnology Beth Israel Deaconess Medical Center Harvard Medical School 330 Brookline Ave., Boston, MA 02215, USA.
Adv Adapt Data Anal. 2009 Jan 1;1(1):61-70. doi: 10.1142/S1793536909000035.
We introduce a generic framework of dynamical complexity to understand and quantify fluctuations of physiologic time series. In particular, we discuss the importance of applying adaptive data analysis techniques, such as the empirical mode decomposition algorithm, to address the challenges of nonlinearity and nonstationarity that are typically exhibited in biological fluctuations.
我们引入了一个动态复杂性的通用框架,以理解和量化生理时间序列的波动。特别是,我们讨论了应用自适应数据分析技术(如经验模式分解算法)来应对生物波动中典型表现出的非线性和非平稳性挑战的重要性。