Suppr超能文献

爆发时间依赖性可塑性在外侧膝状体核中稳健地引导 ON/OFF 分离。

Burst-time-dependent plasticity robustly guides ON/OFF segregation in the lateral geniculate nucleus.

机构信息

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.

出版信息

PLoS Comput Biol. 2009 Dec;5(12):e1000618. doi: 10.1371/journal.pcbi.1000618. Epub 2009 Dec 24.

Abstract

Spontaneous retinal activity (known as "waves") remodels synaptic connectivity to the lateral geniculate nucleus (LGN) during development. Analysis of retinal waves recorded with multielectrode arrays in mouse suggested that a cue for the segregation of functionally distinct (ON and OFF) retinal ganglion cells (RGCs) in the LGN may be a desynchronization in their firing, where ON cells precede OFF cells by one second. Using the recorded retinal waves as input, with two different modeling approaches we explore timing-based plasticity rules for the evolution of synaptic weights to identify key features underlying ON/OFF segregation. First, we analytically derive a linear model for the evolution of ON and OFF weights, to understand how synaptic plasticity rules extract input firing properties to guide segregation. Second, we simulate postsynaptic activity with a nonlinear integrate-and-fire model to compare findings with the linear model. We find that spike-time-dependent plasticity, which modifies synaptic weights based on millisecond-long timing and order of pre- and postsynaptic spikes, fails to segregate ON and OFF retinal inputs in the absence of normalization. Implementing homeostatic mechanisms results in segregation, but only with carefully-tuned parameters. Furthermore, extending spike integration timescales to match the second-long input correlation timescales always leads to ON segregation because ON cells fire before OFF cells. We show that burst-time-dependent plasticity can robustly guide ON/OFF segregation in the LGN without normalization, by integrating pre- and postsynaptic bursts irrespective of their firing order and over second-long timescales. We predict that an LGN neuron will become ON- or OFF-responsive based on a local competition of the firing patterns of neighboring RGCs connecting to it. Finally, we demonstrate consistency with ON/OFF segregation in ferret, despite differences in the firing properties of retinal waves. Our model suggests that diverse input statistics of retinal waves can be robustly interpreted by a burst-based rule, which underlies retinogeniculate plasticity across different species.

摘要

自发性视网膜活动(称为“波”)在发育过程中重塑了外侧膝状体核(LGN)的突触连接。使用多电极阵列在小鼠中记录的视网膜波的分析表明,区分功能上不同的(ON 和 OFF)视网膜神经节细胞(RGC)在 LGN 中的一个线索可能是它们放电的去同步,其中 ON 细胞比 OFF 细胞提前一秒。我们使用记录的视网膜波作为输入,使用两种不同的建模方法探索基于时间的可塑性规则,以确定突触权重演变的关键特征,从而了解 ON/OFF 分离的基础。首先,我们推导出用于 ON 和 OFF 权重演变的线性模型,以了解突触可塑性规则如何提取输入放电特性以指导分离。其次,我们使用非线性积分和放电模型模拟突触后活动,以将发现与线性模型进行比较。我们发现,基于毫秒长的时间和前后突触的顺序调整突触权重的依赖于尖峰时间的可塑性,在没有归一化的情况下无法分离 ON 和 OFF 视网膜输入。实现同型调节机制会导致分离,但仅在精心调整参数的情况下。此外,将尖峰积分时间尺度扩展到与第二个长的输入相关时间尺度匹配总是会导致 ON 分离,因为 ON 细胞在 OFF 细胞之前放电。我们表明,通过在不进行归一化的情况下,无论其放电顺序如何,都可以通过整合前后突触爆发来实现爆发时间依赖性可塑性,从而在 LGN 中可靠地指导 ON/OFF 分离,并在第二个长的时间尺度上进行整合。我们预测,根据连接到它的相邻 RGC 的放电模式的局部竞争,LGN 神经元将成为 ON 或 OFF 响应。最后,尽管视网膜波的放电特性存在差异,但我们仍在雪貂中证明了与 ON/OFF 分离的一致性。我们的模型表明,基于爆发的规则可以稳健地解释视网膜波的各种输入统计信息,这是跨不同物种的视网膜神经节可塑性的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0b2/2790088/d2f96796b095/pcbi.1000618.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验