Suppr超能文献

糖酵解网络重构是胚胎干细胞心脏分化能量学的基础。

Glycolytic network restructuring integral to the energetics of embryonic stem cell cardiac differentiation.

机构信息

Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Departments of Medicine, Molecular Pharmacology and Experimental Therapeutics, and Medical Genetics, Mayo Clinic College of Medicine, Mayo Clinic, 200 First Street SW, Stabile 5, Rochester, MN 55905, USA.

出版信息

J Mol Cell Cardiol. 2010 Apr;48(4):725-34. doi: 10.1016/j.yjmcc.2009.12.014. Epub 2010 Jan 4.

Abstract

Decoding of the bioenergetic signature underlying embryonic stem cell cardiac differentiation has revealed a mandatory transformation of the metabolic infrastructure with prominent mitochondrial network expansion and a distinctive switch from glycolysis to oxidative phosphorylation. Here, we demonstrate that despite reduction in total glycolytic capacity, stem cell cardiogenesis engages a significant transcriptome, proteome, as well as enzymatic and topological rearrangement in the proximal, medial, and distal modules of the glycolytic pathway. Glycolytic restructuring was manifested by a shift in hexokinase (Hk) isoforms from Hk-2 to cardiac Hk-1, with intracellular and intermyofibrillar localization mapping mitochondrial network arrangement. Moreover, upregulation of cardiac-specific enolase 3, phosphofructokinase, and phosphoglucomutase and a marked increase in glyceraldehyde 3-phosphate dehydrogenase (GAPDH) phosphotransfer activity, along with apparent post-translational modifications of GAPDH and phosphoglycerate kinase, were all distinctive for derived cardiomyocytes compared to the embryonic stem cell source. Lactate dehydrogenase (LDH) isoforms evolved towards LDH-2 and LDH-3, containing higher proportions of heart-specific subunits, and pyruvate dehydrogenase isoforms rearranged between E1alpha and E1beta, transitions favorable for substrate oxidation in mitochondria. Concomitantly, transcript levels of fetal pyruvate kinase isoform M2, aldolase 3, and transketolase, which shunt the glycolytic with pentose phosphate pathways, were reduced. Collectively, changes in glycolytic pathway modules indicate active redeployment, which would facilitate connectivity of the expanding mitochondrial network with ATP utilization sites. Thus, the delineated developmental dynamics of the glycolytic phosphotransfer network is integral to the remodeling of cellular energetic infrastructure underlying stem cell cardiogenesis.

摘要

胚胎干细胞心脏分化的基础生物能量特征的解码揭示了代谢基础设施的强制性转变,伴随着线粒体网络的显著扩张和从糖酵解到氧化磷酸化的独特转变。在这里,我们证明尽管总糖酵解能力降低,但干细胞心肌发生仍涉及糖酵解途径近端、中端和远端模块中的显著转录组、蛋白质组以及酶和拓扑重排。糖酵解重构表现为己糖激酶(Hk)同工型从 Hk-2 向心脏 Hk-1 的转变,细胞内和肌原纤维内定位映射线粒体网络排列。此外,心脏特异性烯醇酶 3、磷酸果糖激酶和磷酸葡萄糖变位酶的上调以及甘油醛 3-磷酸脱氢酶(GAPDH)磷酸转移活性的显著增加,以及 GAPDH 和磷酸甘油酸激酶的明显翻译后修饰,与衍生的心肌细胞相比,胚胎干细胞来源均具有独特性。乳酸脱氢酶(LDH)同工型向 LDH-2 和 LDH-3 演变,含有更高比例的心脏特异性亚基,丙酮酸脱氢酶同工型在 E1alpha 和 E1beta 之间重新排列,这些转变有利于线粒体中底物的氧化。同时,糖酵解途径模块的转录水平降低了胎儿丙酮酸激酶同工型 M2、醛缩酶 3 和转酮醇酶的表达,这些酶将糖酵解与戊糖磷酸途径连接起来。总之,糖酵解途径模块的变化表明了积极的重新配置,这将有助于扩展的线粒体网络与 ATP 利用位点的连接。因此,所描绘的糖酵解磷酸转移网络的发育动力学是干细胞心肌发生下细胞能量基础设施重构的组成部分。

相似文献

3
Glycolytic enzyme interactions with tubulin and microtubules.糖酵解酶与微管蛋白和微管的相互作用。
Biochim Biophys Acta. 1989 Nov 9;999(1):64-70. doi: 10.1016/0167-4838(89)90031-9.

引用本文的文献

7
Metabolic control of induced pluripotency.诱导多能性的代谢调控。
Front Cell Dev Biol. 2024 Jan 11;11:1328522. doi: 10.3389/fcell.2023.1328522. eCollection 2023.

本文引用的文献

7
Guided stem cell cardiopoiesis: discovery and translation.引导性干细胞心脏生成:发现与转化。
J Mol Cell Cardiol. 2008 Oct;45(4):523-9. doi: 10.1016/j.yjmcc.2008.09.122. Epub 2008 Sep 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验