Suppr超能文献

从酿酒酵母中纯化跨膜蛋白用于X射线晶体学研究。

Purification of transmembrane proteins from Saccharomyces cerevisiae for X-ray crystallography.

作者信息

Clark Kathleen M, Fedoriw Nadia, Robinson Katrina, Connelly Sara M, Randles Joan, Malkowski Michael G, DeTitta George T, Dumont Mark E

机构信息

Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

出版信息

Protein Expr Purif. 2010 Jun;71(2):207-23. doi: 10.1016/j.pep.2009.12.012. Epub 2010 Jan 4.

Abstract

To enhance the quantity and quality of eukaryotic transmembrane proteins (TMPs) available for structure determination by X-ray crystallography, we have optimized protocols for purification of TMPs expressed in the yeast Saccharomyces cerevisiae. We focused on a set of the highest-expressing endogenous yeast TMPs for which there are established biochemical assays. Genes encoding the target TMPs are transferred via ligation-independent cloning to a series of vectors that allow expression of reading frames fused to C-terminal His10 and ZZ (IgG-binding) domains that are separated from the reading frame by a cleavage site for rhinovirus 3C protease. Several TMP targets expressed from these vectors have been purified via affinity chromatography and gel filtration chromatography at levels and purities sufficient for ongoing crystallization trials. Initial purifications were based on expression of the genes under control of a galactose-inducible promoter, but higher cell densities and improved expression have been obtained through use of the yeast ADH2 promoter. Wide variations have been observed in the behavior of different TMP targets during purification; some can be readily purified, while others do not bind efficiently to affinity matrices, are not efficiently cleaved from the matrices, or remain tightly associated with the matrices even after cleavage of the affinity tags. The size, oligomeric state, and composition of purified protein-detergent complexes purified under different conditions were analyzed using a colorimetric assay of detergent concentrations and by analytical size-exclusion chromatography using static light scattering, refractive index, and UV absorption detection to monitor the elution profiles. Effective procedures were developed for obtaining high concentrations of purified TMPs without excessively concentrating detergents.

摘要

为了提高可用于X射线晶体学结构测定的真核跨膜蛋白(TMP)的数量和质量,我们优化了在酿酒酵母中表达的TMP的纯化方案。我们专注于一组表达量最高的内源性酵母TMP,针对这些蛋白已有成熟的生化检测方法。编码目标TMP的基因通过不依赖连接的克隆转移到一系列载体中,这些载体允许表达与C端His10和ZZ(IgG结合)结构域融合的阅读框,它们通过鼻病毒3C蛋白酶的切割位点与阅读框分开。从这些载体表达的几个TMP靶标已通过亲和色谱和凝胶过滤色谱纯化,其水平和纯度足以进行正在进行的结晶试验。最初的纯化基于在半乳糖诱导型启动子控制下的基因表达,但通过使用酵母ADH2启动子获得了更高的细胞密度和改善的表达。在纯化过程中观察到不同TMP靶标的行为存在很大差异;一些可以很容易地纯化,而另一些则不能有效地与亲和基质结合,不能有效地从基质上切割下来,或者即使在切割亲和标签后仍与基质紧密结合。使用洗涤剂浓度的比色测定法以及通过使用静态光散射、折射率和紫外吸收检测的分析尺寸排阻色谱法来监测洗脱曲线,分析了在不同条件下纯化的蛋白质 - 洗涤剂复合物的大小、寡聚状态和组成。开发了有效的程序以获得高浓度的纯化TMP,而不过度浓缩洗涤剂。

相似文献

1
Purification of transmembrane proteins from Saccharomyces cerevisiae for X-ray crystallography.
Protein Expr Purif. 2010 Jun;71(2):207-23. doi: 10.1016/j.pep.2009.12.012. Epub 2010 Jan 4.
2
Expression and Purification of Membrane Proteins in Saccharomyces cerevisiae.
Methods Mol Biol. 2020;2127:47-61. doi: 10.1007/978-1-0716-0373-4_4.
4
Purification, crystallization and preliminary X-ray crystallographic analysis of the lumenal domain of the ER-vesicle protein Erv41p from Saccharomyces cerevisiae.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2013 May 1;69(Pt 5):544-6. doi: 10.1107/S1744309113008063. Epub 2013 Apr 30.
5
Expression and purification of human and Saccharomyces cerevisiae equilibrative nucleoside transporters.
Protein Expr Purif. 2018 Feb;142:68-74. doi: 10.1016/j.pep.2017.09.002. Epub 2017 Sep 14.
7
Cloning, purification, crystallization and preliminary X-ray diffraction crystallographic study of acyl-protein thioesterase 1 from Saccharomyces cerevisiae.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Jul 1;68(Pt 7):775-7. doi: 10.1107/S1744309112019276. Epub 2012 Jun 27.
8
Cloning, purification, crystallization and preliminary X-ray studies of HMO2 from Saccharomyces cerevisiae.
Acta Crystallogr F Struct Biol Commun. 2014 Jan;70(Pt 1):57-9. doi: 10.1107/S2053230X13031580. Epub 2013 Dec 24.
9
Expression in yeast and purification of a membrane protein, SERCA1a, using a biotinylated acceptor domain.
Protein Expr Purif. 2006 Jul;48(1):32-42. doi: 10.1016/j.pep.2006.03.001. Epub 2006 Mar 24.

引用本文的文献

3
Phosphoramidon inhibits the integral membrane protein zinc metalloprotease ZMPSTE24.
Acta Crystallogr D Struct Biol. 2018 Aug 1;74(Pt 8):739-747. doi: 10.1107/S2059798318003431. Epub 2018 Jul 24.
4
Acquisition of accurate data from intramolecular quenched fluorescence protease assays.
Anal Biochem. 2017 Apr 1;522:30-36. doi: 10.1016/j.ab.2017.01.020. Epub 2017 Jan 22.
5
Human CaaX protease ZMPSTE24 expressed in yeast: Structure and inhibition by HIV protease inhibitors.
Protein Sci. 2017 Feb;26(2):242-257. doi: 10.1002/pro.3074. Epub 2016 Nov 11.
6
Structure of the SLC4 transporter Bor1p in an inward-facing conformation.
Protein Sci. 2017 Jan;26(1):130-145. doi: 10.1002/pro.3061. Epub 2016 Oct 21.
7
Deducing the symmetry of helical assemblies: Applications to membrane proteins.
J Struct Biol. 2016 Aug;195(2):167-178. doi: 10.1016/j.jsb.2016.05.011. Epub 2016 May 30.
8
Current strategies for protein production and purification enabling membrane protein structural biology.
Biochem Cell Biol. 2016 Dec;94(6):507-527. doi: 10.1139/bcb-2015-0143. Epub 2016 Jan 20.
9
The Crystal Structure of an Integral Membrane Fatty Acid α-Hydroxylase.
J Biol Chem. 2015 Dec 11;290(50):29820-33. doi: 10.1074/jbc.M115.680124. Epub 2015 Oct 28.
10
A Novel Screening Approach for Optimal and Functional Fusion of T4 Lysozyme in GPCRs.
Methods Enzymol. 2015;557:27-43. doi: 10.1016/bs.mie.2014.12.031. Epub 2015 Mar 24.

本文引用的文献

2
Heterologous expression of L. major proteins in S. cerevisiae: a test of solubility, purity, and gene recoding.
J Struct Funct Genomics. 2009 Sep;10(3):233-47. doi: 10.1007/s10969-009-9068-9. Epub 2009 Aug 22.
3
The role of solution NMR in the structure determinations of VDAC-1 and other membrane proteins.
Curr Opin Struct Biol. 2009 Aug;19(4):396-401. doi: 10.1016/j.sbi.2009.07.013. Epub 2009 Aug 7.
4
The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist.
Science. 2008 Nov 21;322(5905):1211-7. doi: 10.1126/science.1164772. Epub 2008 Oct 2.
5
Static light scattering to characterize membrane proteins in detergent solution.
Methods. 2008 Oct;46(2):73-82. doi: 10.1016/j.ymeth.2008.06.012. Epub 2008 Jul 14.
6
Structure of a beta1-adrenergic G-protein-coupled receptor.
Nature. 2008 Jul 24;454(7203):486-91. doi: 10.1038/nature07101. Epub 2008 Jun 25.
7
High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor.
Science. 2007 Nov 23;318(5854):1258-65. doi: 10.1126/science.1150577. Epub 2007 Oct 25.
8
Breaking the bottleneck: eukaryotic membrane protein expression for high-resolution structural studies.
J Struct Biol. 2007 Dec;160(3):265-74. doi: 10.1016/j.jsb.2007.07.001. Epub 2007 Jul 14.
9
Affinity purification and characterization of a G-protein coupled receptor, Saccharomyces cerevisiae Ste2p.
Protein Expr Purif. 2007 Nov;56(1):62-71. doi: 10.1016/j.pep.2007.06.002. Epub 2007 Jun 20.
10
Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein.
Science. 2007 Jul 27;317(5837):510-2. doi: 10.1126/science.1144346. Epub 2007 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验