Department of Psychology, Life Sciences Centre, Dalhousie University, Halifax, NS B3H 4J1, Canada.
Curr Biol. 2010 Jan 12;20(1):9-18. doi: 10.1016/j.cub.2009.11.065. Epub 2009 Dec 31.
The Drosophila basic helix-loop-helix (bHLH) gene dimmed (dimm) promotes a neurosecretory/neuroendocrine phenotype in cells but is not associated with specific neuropeptides or neurohormones. Rather, it is expressed by those peptidergic neurons that project long axons and appear to produce large amounts of secretory peptides. Here, we genetically transform nonpeptidergic neurons in Drosophila to study DIMM's action mechanisms.
Nonpeptidergic neurons normally fail to accumulate ectopic neuropeptides. We now show that they will do so when they are also forced to express ectopic DIMM. Furthermore, mass spectrometry shows that photoreceptors, which are normally nonpeptidergic, fail to process an ectopic neuropeptide precursor to make bioactive peptides but will do so efficiently when DIMM is co-misexpressed. Likewise, photoreceptors, which normally package the fast neurotransmitter histamine within small clear synaptic vesicles, produce numerous large dense-core vesicles (LDCVs) when they misexpress DIMM. These novel LDCVs accumulate ectopic neuropeptide when photoreceptors co-misexpress a neuropeptide transgene. DIMM-expressing photoreceptors no longer accumulate histamine and lose synaptic organelles critical to their normal physiology.
These findings indicate that DIMM suppresses conventional fast neurotransmission and promotes peptidergic neurosecretory properties. We conclude that DIMM normally provides a comprehensive transcriptional control to direct the differentiation of dedicated neuroendocrine neurons.
果蝇基本螺旋-环-螺旋(bHLH)基因 dimmed(dimm)促进细胞中的神经分泌/神经内分泌表型,但与特定的神经肽或神经激素无关。相反,它是由那些投射长轴突的肽能神经元表达的,似乎产生大量的分泌肽。在这里,我们通过遗传转化果蝇中的非肽能神经元来研究 DIMM 的作用机制。
非肽能神经元通常不会积累异位神经肽。我们现在表明,当它们也被迫表达异位 DIMM 时,它们会这样做。此外,质谱分析表明,正常情况下是非肽能的感光细胞不能将异位神经肽前体加工成生物活性肽,但当 DIMM 共表达时,它们可以有效地做到这一点。同样,正常情况下将快速神经递质组氨酸包装在小而清晰的突触小泡中的感光细胞,当它们错误表达 DIMM 时会产生许多大的致密核心小泡(LDCV)。当感光细胞共表达神经肽转基因时,这些新的 LDCV 会积累异位神经肽。表达 DIMM 的感光细胞不再积累组氨酸,并且失去了对其正常生理学至关重要的突触细胞器。
这些发现表明 DIMM 抑制了传统的快速神经传递,并促进了肽能神经分泌特性。我们得出的结论是,DIMM 通常提供全面的转录控制,以指导专门的神经内分泌神经元的分化。