Kim Deok-Ho, Seo Chang-Ho, Han Karam, Kwon Keon Woo, Levchenko Andre, Suh Kahp-Yang
Department of Biomedical Engineering Johns Hopkins University Baltimore, MD 21218 (USA).
Adv Funct Mater. 2009 Feb 6;19(10):1579-1586. doi: 10.1002/adfm.200990041.
This work reports the design of and experimentation with a topographically patterned cell culture substrate of variable local density and anisotropy as a facile and efficient platform to guide the organization and migration of cells in spatially desirable patterns. Using UV-assisted capillary force lithography, an optically transparent microstructured layer of a UV curable poly(urethane acrylate) resin is fabricated and employed as a cell-culture substrate after coating with fibronectin. With variable local pattern density and anisotropy present in a single cell-culture substrate, the differential polarization of cell morphology and movement in a single experiment is quantitatively characterized. It is found that cell shape and velocity are exquisitely sensitive to variation in the local anisotropy of the two-dimensional rectangular lattice arrays, with cell elongation and speed decreasing on symmetric lattice patterns. It is also found that cells could integrate orthogonal spatial cues when determining the direction of cell orientation and movement. Furthermore, cells preferentially migrate toward the topographically denser areas from sparser ones. Consistent with these results, it is demonstrated that systematic variation of local densities of rectangular lattice arrays enable a planar assembly of cells into a specified location. It is envisioned that lithographically defined substrates of variable local density and anisotropy not only provide a new route to tailoring the cell-material interface but could serve as a template for advanced tissue engineering.
本研究报告了一种具有可变局部密度和各向异性的地形图案化细胞培养底物的设计与实验,该底物是一种简便高效的平台,可引导细胞以空间上理想的模式进行组织和迁移。利用紫外辅助毛细作用力光刻技术,制备了紫外光固化聚(聚氨酯丙烯酸酯)树脂的光学透明微结构层,并在涂覆纤连蛋白后用作细胞培养底物。由于单个细胞培养底物中存在可变的局部图案密度和各向异性,因此在单个实验中对细胞形态和运动的差异极化进行了定量表征。研究发现,细胞形状和速度对二维矩形晶格阵列局部各向异性的变化极为敏感,在对称晶格图案上细胞伸长和速度会降低。还发现细胞在确定细胞取向和运动方向时能够整合正交空间线索。此外,细胞优先从较稀疏区域向地形较密集区域迁移。与这些结果一致,证明了矩形晶格阵列局部密度的系统变化能够使细胞在平面上组装到指定位置。可以设想,光刻定义的具有可变局部密度和各向异性的底物不仅为定制细胞 - 材料界面提供了一条新途径,还可作为先进组织工程的模板。