Suppr超能文献

用小样本量和非正态缺失数据拟合潜在增长模型。

Fitting Latent Growth Models with Small Sample Sizes and Non-normal Missing Data.

作者信息

Shi Dexin, DiStefano Christine, Zheng Xiaying, Liu Ren, Jiang Zhehan

机构信息

University of South Carolina, Columbia, SC, USA.

American Institutes for Research, Washington, DC, USA.

出版信息

Int J Behav Dev. 2021 Mar;45(2):179-192. doi: 10.1177/0165025420979365. Epub 2021 Jan 7.

Abstract

This study investigates the performance of robust ML estimators when fitting and evaluating small sample latent growth models (LGM) with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., < 100). Among the robust ML estimators, "MLR" was the optimal choice, as it was found to be robust to both non-normality and missing data while also yielding more accurate standard error estimates and growth parameter coverage. However, the choice "MLMV" produced the most accurate values for the Chi-square test statistic under conditions studied. Regarding the goodness of fit indices, as sample size decreased, all three fit indices studied (i.e., CFI, RMSEA, and SRMR) exhibited worse fit. When the sample size was very small (e.g., < 60), the fit indices would imply that a proposed model fit poorly, when this might not be actually the case in the population.

摘要

本研究调查了在拟合和评估具有非正态缺失数据的小样本潜在增长模型(LGM)时稳健最大似然估计量的性能。结果表明,即使样本量非常小(例如,<100),稳健最大似然方法也可用于处理非正态性。在稳健最大似然估计量中,“MLR”是最佳选择,因为它对非正态性和缺失数据均具有稳健性,同时还能产生更准确的标准误差估计值和增长参数覆盖率。然而,在所研究的条件下,“MLMV”选择产生了卡方检验统计量的最准确值。关于拟合优度指数,随着样本量的减少,所研究的所有三个拟合指数(即CFI、RMSEA和SRMR)均显示拟合效果变差。当样本量非常小(例如,<60)时,拟合指数可能会表明所提出的模型拟合不佳,但在总体中实际情况可能并非如此。

相似文献

1
Fitting Latent Growth Models with Small Sample Sizes and Non-normal Missing Data.
Int J Behav Dev. 2021 Mar;45(2):179-192. doi: 10.1177/0165025420979365. Epub 2021 Jan 7.
2
The effect of latent and error non-normality on corrections to the test statistic in structural equation modeling.
Behav Res Methods. 2022 Oct;54(5):2351-2363. doi: 10.3758/s13428-021-01729-9. Epub 2022 Jan 10.
3
Evaluating SEM Model Fit with Small Degrees of Freedom.
Multivariate Behav Res. 2022 Mar-May;57(2-3):179-207. doi: 10.1080/00273171.2020.1868965. Epub 2021 Feb 12.
5
Fitting Ordinal Factor Analysis Models With Missing Data: A Comparison Between Pairwise Deletion and Multiple Imputation.
Educ Psychol Meas. 2020 Feb;80(1):41-66. doi: 10.1177/0013164419845039. Epub 2019 Apr 26.
6
Evaluating fit indices in a multilevel latent growth model with unbalanced design: a Monte Carlo study.
Front Psychol. 2024 May 3;15:1366850. doi: 10.3389/fpsyg.2024.1366850. eCollection 2024.
7
Advantages of Using Unweighted Approximation Error Measures for Model Fit Assessment.
Psychometrika. 2023 Jun;88(2):413-433. doi: 10.1007/s11336-023-09909-6. Epub 2023 Apr 18.
8
Evaluating Close Fit in Ordinal Factor Analysis Models With Multiply Imputed Data.
Educ Psychol Meas. 2024 Feb;84(1):171-189. doi: 10.1177/00131644231158854. Epub 2023 Mar 27.
10
The Effect of Estimation Methods on SEM Fit Indices.
Educ Psychol Meas. 2020 Jun;80(3):421-445. doi: 10.1177/0013164419885164. Epub 2019 Nov 10.

引用本文的文献

3
Recovering knot placements in Bayesian piecewise growth models with missing data.
Behav Res Methods. 2025 Jun 18;57(7):201. doi: 10.3758/s13428-025-02716-0.
4
Trajectories of Canadian Workers' Well-Being During the Onset of the COVID-19 Pandemic.
Appl Res Qual Life. 2025;20(1):393-433. doi: 10.1007/s11482-024-10397-8. Epub 2025 Jan 7.
5
Psychometric Properties of the Adverse Childhood Experiences Abuse Short Form (ACE-ASF) for Ecuadorian Youth.
Eur J Investig Health Psychol Educ. 2025 Apr 16;15(4):63. doi: 10.3390/ejihpe15040063.
7
Acute pain trajectories in elderly patients with fragility hip fractures.
Bone. 2025 Apr;193:117428. doi: 10.1016/j.bone.2025.117428. Epub 2025 Feb 22.

本文引用的文献

1
Fitting Ordinal Factor Analysis Models With Missing Data: A Comparison Between Pairwise Deletion and Multiple Imputation.
Educ Psychol Meas. 2020 Feb;80(1):41-66. doi: 10.1177/0013164419845039. Epub 2019 Apr 26.
2
Understanding the Model Size Effect on SEM Fit Indices.
Educ Psychol Meas. 2019 Apr;79(2):310-334. doi: 10.1177/0013164418783530. Epub 2018 Jun 29.
3
Correcting Model Fit Criteria for Small Sample Latent Growth Models With Incomplete Data.
Educ Psychol Meas. 2017 Dec;77(6):990-1018. doi: 10.1177/0013164416661824. Epub 2016 Aug 1.
4
A Cautionary Note on the Use of the Vale and Maurelli Method to Generate Multivariate, Nonnormal Data for Simulation Purposes.
Educ Psychol Meas. 2015 Aug;75(4):541-567. doi: 10.1177/0013164414548894. Epub 2014 Sep 12.
5
On the Computation of the RMSEA and CFI from the Mean-And-Variance Corrected Test Statistic with Nonnormal Data in SEM.
Multivariate Behav Res. 2018 May-Jun;53(3):419-429. doi: 10.1080/00273171.2018.1455142. Epub 2018 Apr 6.
6
Differentiating between mixed-effects and latent-curve approaches to growth modeling.
Behav Res Methods. 2018 Aug;50(4):1398-1414. doi: 10.3758/s13428-017-0976-5.
7
Modeling Clustered Data with Very Few Clusters.
Multivariate Behav Res. 2016 Jul-Aug;51(4):495-518. doi: 10.1080/00273171.2016.1167008. Epub 2016 Jun 7.
8
A Simple Simulation Technique for Nonnormal Data with Prespecified Skewness, Kurtosis, and Covariance Matrix.
Multivariate Behav Res. 2016 Mar-Jun;51(2-3):207-19. doi: 10.1080/00273171.2015.1133274. Epub 2016 Mar 25.
9
An Investigation of the Sample Performance of Two Nonnormality Corrections for RMSEA.
Multivariate Behav Res. 2012 Nov;47(6):904-30. doi: 10.1080/00273171.2012.715252.
10
Adjusting Incremental Fit Indices for Nonnormality.
Multivariate Behav Res. 2014 Sep-Oct;49(5):460-70. doi: 10.1080/00273171.2014.933697.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验