Suppr超能文献

气候变化和白纹伊蚊在中国的风险:当前影响和未来预测。

Climate change and Aedes albopictus risks in China: current impact and future projection.

机构信息

Shandong Institute of Parasitic Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Jining, Shandong Province, 272033, People's Republic of China.

Program in Public Health, University of California, Irvine, CA, 92697, USA.

出版信息

Infect Dis Poverty. 2023 Mar 24;12(1):26. doi: 10.1186/s40249-023-01083-2.

Abstract

BACKGROUND

Future distribution of dengue risk is usually predicted based on predicted climate changes using general circulation models (GCMs). However, it is difficult to validate the GCM results and assess the uncertainty of the predictions. The observed changes in climate may be very different from the GCM results. We aim to utilize trends in observed climate dynamics to predict future risks of Aedes albopictus in China.

METHODS

We collected Ae. albopictus surveillance data and observed climate records from 80 meteorological stations from 1970 to 2021. We analyzed the trends in climate change in China and made predictions on future climate for the years 2050 and 2080 based on trend analyses. We analyzed the relationship between climatic variables and the prevalence of Ae. albopictus in different months/seasons. We built a classification tree model (based on the average of 999 runs of classification and regression tree analyses) to predict the monthly/seasonal Ae. albopictus distribution based on the average climate from 1970 to 2000 and assessed the contributions of different climatic variables to the Ae. albopictus distribution. Using these models, we projected the future distributions of Ae. albopictus for 2050 and 2080.

RESULTS

The study included Ae. albopictus surveillance from 259 sites in China found that winter to early spring (November-February) temperatures were strongly correlated with Ae. albopictus prevalence (prediction accuracy ranges 93.0-98.8%)-the higher the temperature the higher the prevalence, while precipitation in summer (June-September) was important predictor for Ae. albopictus prevalence. The machine learning tree models predicted the current prevalence of Ae. albopictus with high levels of agreement (accuracy > 90% and Kappa agreement > 80% for all 12 months). Overall, winter temperature contributed the most to Ae. albopictus distribution, followed by summer precipitation. An increase in temperature was observed from 1970 to 2021 in most places in China, and annual change rates varied substantially from -0.22 ºC/year to 0.58 ºC/year among sites, with the largest increase in temperature occurring from February to April (an annual increase of 1.4-4.7 ºC in monthly mean, 0.6-4.0 ºC in monthly minimum, and 1.3-4.3 ºC in monthly maximum temperature) and the smallest in November and December. Temperature increases were lower in the tropics/subtropics (1.5-2.3 ºC from February-April) compared to the high-latitude areas (2.6-4.6 ºC from February-April). The projected temperatures in 2050 and 2080 by this study were approximately 1-1.5 °C higher than those projected by GCMs. The estimated current Ae. albopictus risk distribution had a northern boundary of north-central China and the southern edge of northeastern China, with a risk period of June-September. The projected future Ae. albopictus risks in 2050 and 2080 cover nearly all of China, with an expanded risk period of April-October. The current at-risk population was estimated to be 960 million and the future at-risk population was projected to be 1.2 billion.

CONCLUSIONS

The magnitude of climate change in China is likely to surpass GCM predictions. Future dengue risks will expand to cover nearly all of China if current climate trends continue.

摘要

背景

未来登革热风险的分布通常是基于使用通用环流模型(GCMs)预测的气候变化来预测的。然而,验证 GCM 结果和评估预测的不确定性是很困难的。观测到的气候变化可能与 GCM 结果有很大的不同。我们旨在利用观察到的气候动态趋势来预测中国白纹伊蚊未来的风险。

方法

我们收集了 1970 年至 2021 年来自 80 个气象站的白纹伊蚊监测数据和观测气候记录。我们分析了中国气候变化的趋势,并根据趋势分析对 2050 年和 2080 年的未来气候进行了预测。我们分析了气候变量与不同月份/季节白纹伊蚊流行率之间的关系。我们建立了一个分类树模型(基于分类和回归树分析的 999 次运行的平均值),根据 1970 年至 2000 年的平均气候来预测每月/季节性白纹伊蚊的分布,并评估了不同气候变量对白纹伊蚊分布的贡献。利用这些模型,我们预测了 2050 年和 2080 年白纹伊蚊的未来分布。

结果

该研究包括在中国 259 个地点对白纹伊蚊的监测,发现冬季至早春(11 月至 2 月)的温度与白纹伊蚊的流行率密切相关(预测精度范围为 93.0-98.8%)——温度越高,流行率越高,而夏季(6 月至 9 月)的降水是白纹伊蚊流行率的重要预测因素。机器学习树模型对白纹伊蚊的当前流行率进行了预测,具有很高的一致性(所有 12 个月的准确率均>90%,kappa 一致性均>80%)。总的来说,冬季温度对白纹伊蚊的分布贡献最大,其次是夏季降水。自 1970 年以来,中国大部分地区的温度都有所上升,各站点之间的年变化率差异很大,从-0.22°C/年到 0.58°C/年不等,其中最大的升温发生在 2 月至 4 月(月平均气温上升 1.4-4.7°C,月最低气温上升 0.6-4.0°C,月最高气温上升 1.3-4.3°C),而 11 月和 12 月的升温最小。热带/亚热带地区(2 月至 4 月上升 1.5-2.3°C)的升温幅度低于高纬度地区(2 月至 4 月上升 2.6-4.6°C)。本研究预测的 2050 年和 2080 年的温度比 GCMs 预测的温度高约 1-1.5°C。估计的当前白纹伊蚊风险分布的北部边界为中国中北部,东北部的边缘,风险期为 6 月至 9 月。预计 2050 年和 2080 年的未来白纹伊蚊风险将覆盖中国几乎所有地区,风险期将扩大到 4 月至 10 月。当前的风险人群估计为 9.6 亿,未来的风险人群预计为 12 亿。

结论

中国气候变化的幅度可能超过 GCM 预测。如果继续目前的气候趋势,未来登革热风险将扩大到几乎覆盖整个中国。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d03/10037799/ad23d3295ebb/40249_2023_1083_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验