Ahmed H Shafeeq
Bangalore Medical College and Research Institute, BMCRI, K.R Road, Bangalore, 560002 Karnataka India.
Indian J Thorac Cardiovasc Surg. 2025 Mar;41(3):371-380. doi: 10.1007/s12055-024-01889-1. Epub 2025 Feb 8.
Correlation indicates a relationship between variables without causation, while causation implies one variable directly influences the other in clinical research. Through various statistical approaches, including Pearson and Spearman correlation coefficients, we can explore the strength of linear and non-linear relationships. Phi coefficient and the point-biserial correlation are other alternative techniques. Scatter plots are used to illustrate correlations in real-world data, guiding surgeons in understanding how variables like experience impact complication rates. Emphasis is placed on recognizing confounding variables, applying appropriate statistical methods, and interpreting results accurately to inform clinical decisions. This paper highlights the importance of evidence-based, data-driven practices in enhancing surgical outcomes.
相关性表示变量之间的关系但无因果关系,而因果关系则意味着在临床研究中一个变量直接影响另一个变量。通过各种统计方法,包括皮尔逊和斯皮尔曼相关系数,我们可以探索线性和非线性关系的强度。Phi系数和点二列相关是其他替代技术。散点图用于说明实际数据中的相关性,指导外科医生了解经验等变量如何影响并发症发生率。重点在于识别混杂变量、应用适当的统计方法并准确解释结果,以为临床决策提供依据。本文强调了基于证据、数据驱动的实践在改善手术结果方面的重要性。