Suppr超能文献

测量误差模型中的变量选择

Variable Selection in Measurement Error Models.

作者信息

Ma Yanyuan, Li Runze

机构信息

Department of Statistics, Texas A&M University, College Station, TX 77843.

出版信息

Bernoulli (Andover). 2010;16(1):274-300. doi: 10.3150/09-bej205.

Abstract

Measurement error data or errors-in-variable data are often collected in many studies. Natural criterion functions are often unavailable for general functional measurement error models due to the lack of information on the distribution of the unobservable covariates. Typically, the parameter estimation is via solving estimating equations. In addition, the construction of such estimating equations routinely requires solving integral equations, hence the computation is often much more intensive compared with ordinary regression models. Because of these difficulties, traditional best subset variable selection procedures are not applicable, and in the measurement error model context, variable selection remains an unsolved issue. In this paper, we develop a framework for variable selection in measurement error models via penalized estimating equations. We first propose a class of selection procedures for general parametric measurement error models and for general semiparametric measurement error models, and study the asymptotic properties of the proposed procedures. Then, under certain regularity conditions and with a properly chosen regularization parameter, we demonstrate that the proposed procedure performs as well as an oracle procedure. We assess the finite sample performance via Monte Carlo simulation studies and illustrate the proposed methodology through the empirical analysis of a familiar data set.

摘要

在许多研究中经常会收集测量误差数据或变量含误差数据。由于缺乏关于不可观测协变量分布的信息,对于一般的函数测量误差模型,通常无法获得自然准则函数。通常,参数估计是通过求解估计方程来进行的。此外,构建此类估计方程通常需要求解积分方程,因此与普通回归模型相比,计算量往往要大得多。由于这些困难,传统的最佳子集变量选择程序并不适用,并且在测量误差模型的背景下,变量选择仍然是一个未解决的问题。在本文中,我们通过惩罚估计方程开发了一个测量误差模型中的变量选择框架。我们首先为一般参数测量误差模型和一般半参数测量误差模型提出了一类选择程序,并研究了所提出程序的渐近性质。然后,在某些正则性条件下并通过适当选择正则化参数,我们证明所提出的程序与一种理想程序具有相同的性能。我们通过蒙特卡罗模拟研究评估有限样本性能,并通过对一个熟悉数据集的实证分析来说明所提出的方法。

相似文献

1
Variable Selection in Measurement Error Models.
Bernoulli (Andover). 2010;16(1):274-300. doi: 10.3150/09-bej205.
2
Variable Selection for Partially Linear Models with Measurement Errors.
J Am Stat Assoc. 2009;104(485):234-248. doi: 10.1198/jasa.2009.0127.
3
Variable Selection in Semiparametric Regression Modeling.
Ann Stat. 2008;36(1):261-286. doi: 10.1214/009053607000000604.
4
Variable selection for ultra-high dimensional quantile regression with missing data and measurement error.
Stat Methods Med Res. 2021 Jan;30(1):129-150. doi: 10.1177/0962280220941533. Epub 2020 Aug 3.
7
VARIABLE SELECTION FOR HIGH DIMENSIONAL MULTIVARIATE OUTCOMES.
Stat Sin. 2014 Oct;24(4):1633-1654. doi: 10.5705/ss.2013.019.
8
VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS.
Ann Stat. 2012 Aug 1;40(4):2043-2068. doi: 10.1214/12-AOS1028.
9
Penalized Estimating Functions and Variable Selection in Semiparametric Regression Models.
J Am Stat Assoc. 2008 Jun 1;103(482):672-680. doi: 10.1198/016214508000000184.
10
Variable selection in competing risks models based on quantile regression.
Stat Med. 2019 Oct 15;38(23):4670-4685. doi: 10.1002/sim.8326. Epub 2019 Jul 29.

引用本文的文献

1
BOOME: A Python package for handling misclassified disease and ultrahigh-dimensional error-prone gene expression data.
PLoS One. 2022 Oct 27;17(10):e0276664. doi: 10.1371/journal.pone.0276664. eCollection 2022.
4
Applying the exposome concept in birth cohort research: a review of statistical approaches.
Eur J Epidemiol. 2020 Mar;35(3):193-204. doi: 10.1007/s10654-020-00625-4. Epub 2020 Mar 27.
6
Linear Model Selection when Covariates Contain Errors.
J Am Stat Assoc. 2017;112(520):1553-1561. doi: 10.1080/01621459.2016.1219262. Epub 2017 Jun 29.
9
Variable selection in semi-parametric models.
Stat Methods Med Res. 2016 Aug;25(4):1736-52. doi: 10.1177/0962280213499679. Epub 2013 Aug 28.

本文引用的文献

1
Variable Selection for Partially Linear Models with Measurement Errors.
J Am Stat Assoc. 2009;104(485):234-248. doi: 10.1198/jasa.2009.0127.
2
One-step Sparse Estimates in Nonconcave Penalized Likelihood Models.
Ann Stat. 2008 Aug 1;36(4):1509-1533. doi: 10.1214/009053607000000802.
3
Discussion of "Sure Independence Screening for Ultra-High Dimensional Feature Space.
J R Stat Soc Series B Stat Methodol. 2008 Nov;70(5):903. doi: 10.1111/j.1467-9868.2008.00674.x.
4
Variable Selection using MM Algorithms.
Ann Stat. 2005;33(4):1617-1642. doi: 10.1214/009053605000000200.
5
Variable selection for multivariate failure time data.
Biometrika. 2005;92(2):303-316. doi: 10.1093/biomet/92.2.303.
6
Tuning parameter selectors for the smoothly clipped absolute deviation method.
Biometrika. 2007 Aug 1;94(3):553-568. doi: 10.1093/biomet/asm053.
7
PROFILE-KERNEL LIKELIHOOD INFERENCE WITH DIVERGING NUMBER OF PARAMETERS.
Ann Stat. 2008 Oct;36(5):2232-2260. doi: 10.1214/07-AOS544.
8
Variable Selection in Semiparametric Regression Modeling.
Ann Stat. 2008;36(1):261-286. doi: 10.1214/009053607000000604.
9
Efficient statistical inference procedures for partially nonlinear models and their applications.
Biometrics. 2008 Sep;64(3):904-911. doi: 10.1111/j.1541-0420.2007.00937.x. Epub 2007 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验