Wang Xiaobo, Huang Jiayu, Yin Guosheng, Huang Jian, Wu Yuanshan
School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, 430072, China.
Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road, Hong Kong, China.
Lifetime Data Anal. 2023 Jan;29(1):115-141. doi: 10.1007/s10985-022-09568-2. Epub 2022 Jul 22.
We propose an inferential procedure for additive hazards regression with high-dimensional survival data, where the covariates are prone to measurement errors. We develop a double bias correction method by first correcting the bias arising from measurement errors in covariates through an estimating function for the regression parameter. By adopting the convex relaxation technique, a regularized estimator for the regression parameter is obtained by elaborately designing a feasible loss based on the estimating function, which is solved via linear programming. Using the Neyman orthogonality, we propose an asymptotically unbiased estimator which further corrects the bias caused by the convex relaxation and regularization. We derive the convergence rate of the proposed estimator and establish the asymptotic normality for the low-dimensional parameter estimator and the linear combination thereof, accompanied with a consistent estimator for the variance. Numerical experiments are carried out on both simulated and real datasets to demonstrate the promising performance of the proposed double bias correction method.
我们针对具有高维生存数据的加性风险回归提出了一种推断程序,其中协变量容易出现测量误差。我们开发了一种双重偏差校正方法,首先通过回归参数的估计函数校正协变量测量误差引起的偏差。通过采用凸松弛技术,基于估计函数精心设计一个可行损失,通过线性规划求解得到回归参数的正则化估计量。利用奈曼正交性,我们提出了一个渐近无偏估计量,它进一步校正了由凸松弛和正则化引起的偏差。我们推导了所提出估计量的收敛速度,并建立了低维参数估计量及其线性组合的渐近正态性,同时给出了方差的一致估计量。在模拟数据集和真实数据集上都进行了数值实验,以证明所提出的双重偏差校正方法具有良好的性能。