Department of Plant Sciences, One Shields Ave., University of California, Davis, CA 95616-8780, USA.
Plant Mol Biol. 2010 May;73(1-2):105-18. doi: 10.1007/s11103-009-9591-x. Epub 2010 Jan 3.
Seeds of most cultivated varieties of lettuce (Lactuca sativa L.) fail to germinate at warm temperatures (i.e., above 25-30 degrees C). Seed priming (controlled hydration followed by drying) alleviates this thermoinhibition by increasing the maximum germination temperature. We conducted a quantitative trait locus (QTL) analysis of seed germination responses to priming using a recombinant inbred line (RIL) population derived from a cross between L. sativa cv. Salinas and L. serriola accession UC96US23. Priming significantly increased the maximum germination temperature of the RIL population, and a single major QTL was responsible for 47% of the phenotypic variation due to priming. This QTL collocated with Htg6.1, a major QTL from UC96US23 associated with high temperature germination capacity. Seeds of three near-isogenic lines (NILs) carrying an Htg6.1 introgression from UC96US23 in a Salinas genetic background exhibited synergistic increases in maximum germination temperature in response to priming. LsNCED4, a gene encoding a key enzyme (9-cis-epoxycarotinoid dioxygenase) in the abscisic acid biosynthetic pathway, maps precisely with Htg6.1. Expression of LsNCED4 after imbibition for 24 h at high temperature was greater in non-primed seeds of Salinas, of a second cultivar (Titan) and of NILs containing Htg6.1 compared to primed seeds of the same genotypes. In contrast, expression of genes encoding regulated enzymes in the gibberellin and ethylene biosynthetic pathways (LsGA3ox1 and LsACS1, respectively) was enhanced by priming and suppressed by imbibition at elevated temperatures. Developmental and temperature regulation of hormonal biosynthetic pathways is associated with seed priming effects on germination temperature sensitivity.
大多数生菜(Lactuca sativa L.)栽培品种的种子在温暖的温度(即 25-30 度以上)下无法发芽。种子引发(受控水合后干燥)通过增加最大发芽温度来缓解这种热抑制。我们使用源自生菜 cv. Salinas 和 L. serriola 品系 UC96US23 杂交的重组自交系(RIL)群体,对引发后种子发芽响应进行了数量性状基因座(QTL)分析。引发显著增加了 RIL 群体的最大发芽温度,单个主要 QTL 负责由于引发而导致的表型变异的 47%。该 QTL 与 Htg6.1 共定位,Htg6.1 是 UC96US23 中与高温发芽能力相关的主要 QTL。携带 UC96US23 中 Htg6.1 导入系的三个近等基因系(NIL)的种子在 Salinas 遗传背景下表现出协同作用,最大发芽温度响应引发显著增加。编码关键酶(9-顺式-环氧类胡萝卜素双加氧酶)的基因 LsNCED4 在脱落酸生物合成途径中精确映射到 Htg6.1。在高温下吸胀 24 小时后,LsNCED4 的表达在 Salinas、第二个品种(Titan)和含有 Htg6.1 的 NILs 的非引发种子中大于同一基因型的引发种子。相比之下,赤霉素和乙烯生物合成途径中受调控酶的基因(分别为 LsGA3ox1 和 LsACS1)的表达被引发增强,而被高温吸胀抑制。激素生物合成途径的发育和温度调节与种子引发对发芽温度敏感性的影响有关。