Suppr超能文献

一项使用SMIDGen比较超树和联合分析方法的模拟研究。

A simulation study comparing supertree and combined analysis methods using SMIDGen.

作者信息

Swenson M Shel, Barbançon François, Warnow Tandy, Linder C Randal

机构信息

Department of Computer Sciences, The University of Texas at Austin, Austin TX, USA.

出版信息

Algorithms Mol Biol. 2010 Jan 4;5:8. doi: 10.1186/1748-7188-5-8.

Abstract

BACKGROUND

Supertree methods comprise one approach to reconstructing large molecular phylogenies given multi-marker datasets: trees are estimated on each marker and then combined into a tree (the "supertree") on the entire set of taxa. Supertrees can be constructed using various algorithmic techniques, with the most common being matrix representation with parsimony (MRP). When the data allow, the competing approach is a combined analysis (also known as a "supermatrix" or "total evidence" approach) whereby the different sequence data matrices for each of the different subsets of taxa are concatenated into a single supermatrix, and a tree is estimated on that supermatrix.

RESULTS

In this paper, we describe an extensive simulation study we performed comparing two supertree methods, MRP and weighted MRP, to combined analysis methods on large model trees. A key contribution of this study is our novel simulation methodology (Super-Method Input Data Generator, or SMIDGen) that better reflects biological processes and the practices of systematists than earlier simulations. We show that combined analysis based upon maximum likelihood outperforms MRP and weighted MRP, giving especially big improvements when the largest subtree does not contain most of the taxa.

CONCLUSIONS

This study demonstrates that MRP and weighted MRP produce distinctly less accurate trees than combined analyses for a given base method (maximum parsimony or maximum likelihood). Since there are situations in which combined analyses are not feasible, there is a clear need for better supertree methods. The source tree and combined datasets used in this study can be used to test other supertree and combined analysis methods.

摘要

背景

超级树方法是在给定多标记数据集的情况下重建大型分子系统发育树的一种方法:先在每个标记上估计树,然后将这些树合并成一个包含所有分类单元的树(“超级树”)。超级树可以使用各种算法技术构建,最常见的是简约矩阵表示法(MRP)。在数据允许的情况下,另一种竞争方法是联合分析(也称为“超级矩阵”或“总证据”方法),即将每个不同分类单元子集的不同序列数据矩阵连接成一个单一的超级矩阵,并在该超级矩阵上估计一棵树。

结果

在本文中,我们描述了一项广泛的模拟研究,我们将两种超级树方法(MRP和加权MRP)与基于大型模型树的联合分析方法进行了比较。这项研究的一个关键贡献是我们新颖的模拟方法(超级方法输入数据生成器,或SMIDGen),它比早期的模拟更好地反映了生物过程和系统学家的实践。我们表明,基于最大似然法的联合分析优于MRP和加权MRP,当最大子树不包含大多数分类单元时,改进尤为显著。

结论

这项研究表明,对于给定的基本方法(最大简约法或最大似然法),MRP和加权MRP生成的树的准确性明显低于联合分析。由于在某些情况下联合分析不可行,显然需要更好的超级树方法。本研究中使用的源树和联合数据集可用于测试其他超级树和联合分析方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3467/2837663/7d1cb11d1369/1748-7188-5-8-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验