Suppr超能文献

在流式细胞术中合并混合组分以进行细胞群体鉴定。

Merging mixture components for cell population identification in flow cytometry.

作者信息

Finak Greg, Bashashati Ali, Brinkman Ryan, Gottardo Raphaël

机构信息

Computational Biology Unit, Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, QC, Canada H2W1R7.

出版信息

Adv Bioinformatics. 2009;2009:247646. doi: 10.1155/2009/247646. Epub 2009 Nov 12.

Abstract

We present a framework for the identification of cell subpopulations in flow cytometry data based on merging mixture components using the flowClust methodology. We show that the cluster merging algorithm under our framework improves model fit and provides a better estimate of the number of distinct cell subpopulations than either Gaussian mixture models or flowClust, especially for complicated flow cytometry data distributions. Our framework allows the automated selection of the number of distinct cell subpopulations and we are able to identify cases where the algorithm fails, thus making it suitable for application in a high throughput FCM analysis pipeline. Furthermore, we demonstrate a method for summarizing complex merged cell subpopulations in a simple manner that integrates with the existing flowClust framework and enables downstream data analysis. We demonstrate the performance of our framework on simulated and real FCM data. The software is available in the flowMerge package through the Bioconductor project.

摘要

我们提出了一个基于使用flowClust方法合并混合成分来识别流式细胞术数据中细胞亚群的框架。我们表明,我们框架下的聚类合并算法比高斯混合模型或flowClust能更好地拟合模型,并能更准确地估计不同细胞亚群的数量,特别是对于复杂的流式细胞术数据分布。我们的框架允许自动选择不同细胞亚群的数量,并且我们能够识别算法失败的情况,从而使其适用于高通量流式细胞术分析流程。此外,我们展示了一种以简单方式总结复杂合并细胞亚群的方法,该方法与现有的flowClust框架集成,并能进行下游数据分析。我们在模拟和真实的流式细胞术数据上展示了我们框架的性能。该软件可通过Bioconductor项目在flowMerge包中获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76a6/2798116/c9121f76b6da/ABI2009-247646.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验