帕金森病中 PINK1 的突变导致复合物 I 活性降低和突触功能缺陷。
Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function.
机构信息
Center for Human Genetics, K.U. Leuven, Leuven, Belgium.
出版信息
EMBO Mol Med. 2009 May;1(2):99-111. doi: 10.1002/emmm.200900006.
Mutations of the mitochondrial PTEN (phosphatase and tensin homologue)-induced kinase1 (PINK1) are important causes of recessive Parkinson disease (PD). Studies on loss of function and overexpression implicate PINK1 in apoptosis, abnormal mitochondrial morphology, impaired dopamine release and motor deficits. However, the fundamental mechanism underlying these various phenotypes remains to be clarified. Using fruit fly and mouse models we show that PINK1 deficiency or clinical mutations impact on the function of Complex I of the mitochondrial respiratory chain, resulting in mitochondrial depolarization and increased sensitivity to apoptotic stress in mammalian cells and tissues. In Drosophila neurons, PINK1 deficiency affects synaptic function, as the reserve pool of synaptic vesicles is not mobilized during rapid stimulation. The fundamental importance of PINK1 for energy maintenance under increased demand is further corroborated as this deficit can be rescued by adding ATP to the synapse. The clinical relevance of our observations is demonstrated by the fact that human wild type PINK1, but not PINK1 containing clinical mutations, can rescue Complex 1 deficiency. Our work suggests that Complex I deficiency underlies, at least partially, the pathogenesis of this hereditary form of PD. As Complex I dysfunction is also implicated in sporadic PD, a convergence of genetic and environmental causes of PD on a similar mitochondrial molecular mechanism appears to emerge.
线粒体 PTEN(磷酸酶和张力蛋白同源物)诱导激酶 1(PINK1)的突变是隐性帕金森病(PD)的重要原因。功能丧失和过表达的研究表明,PINK1 参与细胞凋亡、线粒体形态异常、多巴胺释放受损和运动缺陷。然而,这些不同表型的基本机制仍有待阐明。使用果蝇和小鼠模型,我们表明 PINK1 缺乏或临床突变会影响线粒体呼吸链复合物 I 的功能,导致哺乳动物细胞和组织中线粒体去极化和对凋亡应激的敏感性增加。在果蝇神经元中,PINK1 缺乏会影响突触功能,因为在快速刺激期间,突触小泡的储备池不会被动员。PINK1 在增加需求下对能量维持的基本重要性进一步得到证实,因为通过向突触添加 ATP 可以挽救这种缺陷。我们的观察结果具有临床相关性,因为人类野生型 PINK1,但不包含临床突变的 PINK1,可以挽救复合物 1 缺乏。我们的工作表明,至少部分情况下,这种遗传性 PD 形式的发病机制是由复合物 I 缺陷引起的。由于复合物 I 功能障碍也与散发性 PD 有关,因此 PD 的遗传和环境原因似乎汇聚到类似的线粒体分子机制上。