Suppr超能文献

一种联合建模蛋白质-DNA 结合、基因表达和序列数据的贝叶斯方法。

A Bayesian approach to joint modeling of protein-DNA binding, gene expression and sequence data.

机构信息

Division of Biostatistics, Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.

出版信息

Stat Med. 2010 Feb 20;29(4):489-503. doi: 10.1002/sim.3815.

Abstract

The genome-wide DNA-protein-binding data, DNA sequence data and gene expression data represent complementary means to deciphering global and local transcriptional regulatory circuits. Combining these different types of data can not only improve the statistical power, but also provide a more comprehensive picture of gene regulation. In this paper, we propose a novel statistical model to augment protein-DNA-binding data with gene expression and DNA sequence data when available. We specify a hierarchical Bayes model and use Markov chain Monte Carlo simulations to draw inferences. Both simulation studies and an analysis of an experimental data set show that the proposed joint modeling method can significantly improve the specificity and sensitivity of identifying target genes as compared with conventional approaches relying on a single data source.

摘要

全基因组 DNA-蛋白质结合数据、DNA 序列数据和基因表达数据代表了破译全局和局部转录调控回路的互补手段。结合这些不同类型的数据不仅可以提高统计能力,还可以更全面地了解基因调控。在本文中,我们提出了一种新的统计模型,当有蛋白质-DNA 结合数据、基因表达数据和 DNA 序列数据时,可以对其进行扩充。我们指定了一个层次贝叶斯模型,并使用马尔可夫链蒙特卡罗模拟进行推断。模拟研究和对实验数据集的分析都表明,与依赖单一数据源的传统方法相比,所提出的联合建模方法可以显著提高识别靶基因的特异性和敏感性。

相似文献

2
A Bayesian approach to DNA sequence segmentation.一种用于DNA序列分割的贝叶斯方法。
Biometrics. 2004 Sep;60(3):573-81; discussion 581-8. doi: 10.1111/j.0006-341X.2004.00206.x.
5
A Bayesian method for finding regulatory segments in DNA.一种用于寻找DNA中调控片段的贝叶斯方法。
Biopolymers. 2001 Feb;58(2):165-74. doi: 10.1002/1097-0282(200102)58:2<165::AID-BIP50>3.0.CO;2-O.
8
Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli.大肠杆菌中Lrp调控网络的全基因组规模重建
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19462-7. doi: 10.1073/pnas.0807227105. Epub 2008 Dec 3.
9
Bayesian error analysis model for reconstructing transcriptional regulatory networks.用于重建转录调控网络的贝叶斯误差分析模型。
Proc Natl Acad Sci U S A. 2006 May 23;103(21):7988-93. doi: 10.1073/pnas.0600164103. Epub 2006 May 15.

引用本文的文献

本文引用的文献

6
Integrated assessment and prediction of transcription factor binding.转录因子结合的综合评估与预测
PLoS Comput Biol. 2006 Jun 16;2(6):e70. doi: 10.1371/journal.pcbi.0020070.
7
Bayesian error analysis model for reconstructing transcriptional regulatory networks.用于重建转录调控网络的贝叶斯误差分析模型。
Proc Natl Acad Sci U S A. 2006 May 23;103(21):7988-93. doi: 10.1073/pnas.0600164103. Epub 2006 May 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验